Уравнения осей симметрии равносторонней гиперболы

Видео:Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Гипербола

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Функция заданная формулой (y=frac), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

Уравнения осей симметрии равносторонней гиперболы гипербола, где k y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
Уравнения осей симметрии равносторонней гиперболы

Пример №2:
$$y=frac-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

Дробь (color <frac>) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
Уравнения осей симметрии равносторонней гиперболы

Уравнения осей симметрии равносторонней гиперболы

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
Уравнения осей симметрии равносторонней гиперболы

Уравнения осей симметрии равносторонней гиперболы

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
Уравнения осей симметрии равносторонней гиперболы

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

Уравнения осей симметрии равносторонней гиперболы

5. Гипербола нечетная функция.

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
Уравнения осей симметрии равносторонней гиперболы

Уравнения осей симметрии равносторонней гиперболы

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k Category: 8 класс, База знаний, Уроки Tag: Гипербола Leave a comment

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Что такое гипербола

Уравнения осей симметрии равносторонней гиперболы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:§22 Исследование канонического уравнения гиперболыСкачать

§22 Исследование канонического уравнения гиперболы

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

Уравнения осей симметрии равносторонней гиперболы

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Уравнения осей симметрии равносторонней гиперболы

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.



    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

Уравнения осей симметрии равносторонней гиперболы

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
    Уравнения осей симметрии равносторонней гиперболы
  • Выделяем квадраты в знаменателях:
    Уравнения осей симметрии равносторонней гиперболы
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.

    Уравнения осей симметрии равносторонней гиперболы
    Уравнения осей симметрии равносторонней гиперболы

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      Уравнения осей симметрии равносторонней гиперболы
      • Найдем асимптоты гиперболы. Вот так: Уравнения осей симметрии равносторонней гиперболы
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    Уравнения осей симметрии равносторонней гиперболы

    на черновике выражаем:

    Уравнения осей симметрии равносторонней гиперболы

    Уравнение распадается на две функции:

    Уравнения осей симметрии равносторонней гиперболы

    — определяет верхние дуги гиперболы (то, что ищем);

    Уравнения осей симметрии равносторонней гиперболы

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

    Уравнения осей симметрии равносторонней гиперболы

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Уравнения осей симметрии равносторонней гиперболы

    Видео:Гипербола (часть 7). Директрисы гиперболы. Высшая математика.Скачать

    Гипербола (часть 7). Директрисы гиперболы. Высшая математика.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Уравнения осей симметрии равносторонней гиперболы

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Уравнения осей симметрии равносторонней гиперболы

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:11 класс, 53 урок, ГиперболаСкачать

    11 класс, 53 урок, Гипербола

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Уравнения осей симметрии равносторонней гиперболы

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Уравнения осей симметрии равносторонней гиперболы

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Уравнения осей симметрии равносторонней гиперболы

    Запишем это уравнение в координатной форме:

    Уравнения осей симметрии равносторонней гиперболы

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    Уравнения осей симметрии равносторонней гиперболы

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Видео:Лекция 31.2. Кривые второго порядка. Гипербола.Скачать

    Лекция 31.2. Кривые второго порядка. Гипербола.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    Уравнения осей симметрии равносторонней гиперболы

    На самом деле для фокуса F2 и директрисы d2 условие

    Уравнения осей симметрии равносторонней гиперболы

    можно записать в координатной форме так:

    Уравнения осей симметрии равносторонней гиперболы

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Уравнения осей симметрии равносторонней гиперболы

    Видео:§23 Построение гиперболыСкачать

    §23 Построение гиперболы

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Уравнения осей симметрии равносторонней гиперболы

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Уравнения осей симметрии равносторонней гиперболы

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен Уравнения осей симметрии равносторонней гиперболы

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    Видео:Лекция 14, 2021. Вывод уравнения эллипса и гиперболыСкачать

    Лекция 14,  2021. Вывод уравнения эллипса и гиперболы

    2.4 Гипербола

    Гиперболой Называется геометрическое место точек на плоскости, разность расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная.

    Обозначим эту постоянную через 2А, расстояние между фокусами через 2С, а оси координат выберем так же, как в разделе 2.3.

    Пусть М(Х, У) – произвольная точка гиперболы (рисунок 2.4).

    Уравнения осей симметрии равносторонней гиперболы

    По определению гиперболы F2MF1М = ±2A. (Знак плюс в правой части надо выбрать, если F2M > F1М, и минус, если F2M A).

    Исследуем формулу гиперболы.

    1. Уравнение (2.7) содержит квадраты текущих координат, следовательно, оси координат являются осями симметрии гиперболы. Ось симметрии, на которой находятся фокусы, называется фокальной осью, точка пересечения осей симметрии – центром гиперболы. Для гиперболы, заданной уравнением (2.7), фокальная ось совпадает с осью ОХ, а центр – с началом координат.

    В этом случае координаты фокусов гиперболы имеют вид F1(с,0), F2(-с,0).

    2. Точки пересечения с осями симметрии. Точки пересечения гиперболы с осями симметрии называются Вершинами гиперболы. Полагая в уравнении (2.7) У = 0, найдем абсциссы точек пересечения с осью ОХ:

    Уравнения осей симметрии равносторонней гиперболыили X2 = А2, откуда Х = ±А.

    Итак, точки Уравнения осей симметрии равносторонней гиперболыи Уравнения осей симметрии равносторонней гиперболыявляются вершинами гиперболы.

    Если же в уравнении (2.7) принять x = 0, получим

    Уравнения осей симметрии равносторонней гиперболыили У2 = –B2,

    Т. е. для У мы получили мнимые значения. Это означает, что гипербола не пересекает ось ОY.
    В соответствии с этим ось симметрии, пересекающая гиперболу, называется действительной осью (фокальная ось); ось симметрии, которая не пересекает гиперболу, – ее мнимой осью. Для гиперболы, заданной уравнением (2.7), действительной осью симметрии является ось ОХ, а мнимой осью – ось ОY. Длина отрезка А1А2 = 2А, число А называется действительной полуосью гиперболы. Отложим на мнимой оси гиперболы по обе стороны от центра симметрии O отрезки ОВ1 и ОВ2 длиною B, тогда отрезок В1B2 = 2B называют мнимой осью, а величину B – мнимой полуосью гиперболы.

    Из уравнения (2.7) видно, что Уравнения осей симметрии равносторонней гиперболы, следовательно, |X| ³ A. Кривая имеет форму, изображенную на рисунке 2.5. Она располагается вне прямоугольника со сторонами, равными 2А и 2B, с центром в начале координат, и состоит из двух отдельных ветвей, простирающихся в бесконечность (см. рисунок 2.5). Диагонали этого прямоугольника определяются уравнениями

    Уравнения осей симметрии равносторонней гиперболы(2.8)

    И являются Асимптотами гиперболы.

    Уравнения осей симметрии равносторонней гиперболы

    Если A = B, гипербола называется равносторонней.

    Замечание 1. Если мнимая ось гиперболы равна 2А и расположена на оси ОХ, а действи-тельная ось равна 2B и расположена на оси ОY, то уравнение такой гиперболы (рисунок 2.6) имеет вид (каноническое уравнение гиперболы, если ее фокальная ось – ось Y)

    Уравнения осей симметрии равносторонней гиперболы(2.9)

    Координаты фокусов в этом случае имеет вид F1(0,с) и F2(0,-с).

    Гиперболы (2.7) и (2.9) называются Сопряженными гиперболами.

    Уравнения осей симметрии равносторонней гиперболы

    Замечание 2. Эксцентриситетом Гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

    Уравнения осей симметрии равносторонней гиперболы(2.10)

    Для любой гиперболы ε > 1, это число определяет форму гиперболы.

    Пример 2.3. Найти координаты фокусов и вершин гиперболы

    Написать уравнение ее асимптот и вычислить эксцентриситет.

    Решение. Напишем каноническое уравнение гиперболы, для чего обе части уравнения поделим на 144. После сокращения получим

    Уравнения осей симметрии равносторонней гиперболы.

    Отсюда видно, что А2 = 9, т. е. A = 3 и B2 = 16, т. е. B = 4.

    Для гиперболы С2 = А2 + B2 = 16 + 9 = 25, отсюда C = 5.

    Теперь можем написать координаты вершин и фокусов гиперболы:

    Эксцентриситет Уравнения осей симметрии равносторонней гиперболы, а уравнения асимптот имеют вид

    Уравнения осей симметрии равносторонней гиперболыи Уравнения осей симметрии равносторонней гиперболы.

    🎥 Видео

    Эллипс. Гипербола. Их вырожденияСкачать

    Эллипс.  Гипербола.  Их вырождения

    Вершина параболы и ось симметрии. ПримерСкачать

    Вершина параболы и ось симметрии. Пример

    Уравнение равносторонней гиперболы относительно асимптот. (Аналитическая геометрия - урок 13)Скачать

    Уравнение равносторонней гиперболы относительно асимптот. (Аналитическая геометрия - урок 13)

    #4str. Разговор про равнобокие (равносторонние, прямоугольные) гиперболы. Часть IСкачать

    #4str. Разговор про равнобокие (равносторонние, прямоугольные) гиперболы. Часть I

    Вариант 72, № 5. Уравнение оси симметрии параболы. Пример 2Скачать

    Вариант 72, № 5. Уравнение оси симметрии параболы. Пример 2

    Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать

    Написать каноническое уравнение гиперболы.  Дан эксцентриситет

    КАК СТРОИТЬ ПАРАБОЛУ. ОСЬ СИММЕТРИИ (Финальная часть саги о функциях)Скачать

    КАК СТРОИТЬ ПАРАБОЛУ. ОСЬ СИММЕТРИИ (Финальная часть саги о функциях)

    Математический анализ, 15 урок, АссимптотыСкачать

    Математический анализ, 15 урок, Ассимптоты

    Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

    Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

    Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать

    Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |

    Гипербола и её касательнаяСкачать

    Гипербола и её касательная

    §21 Каноническое уравнение гиперболыСкачать

    §21 Каноническое уравнение гиперболы
    Поделиться или сохранить к себе: