Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Содержание
  1. Источник эдс. идеальный и реальный источники
  2. История
  3. Идеальный источник тока (генератор)
  4. Принцип действия
  5. Конструкция
  6. Так в чем же отличие
  7. Применение
  8. Реальный генератор
  9. Примеры
  10. Определение полюсов
  11. Условия работы источников тока
  12. Свойства
  13. Идеальный источник тока
  14. Реальный источник
  15. Источник ЭДС и его характеристика.
  16. Зависимость напряжения на зажимах источника ЭДС от тока в нем носит название внешней характеристики источника, т.е. U12 = f (I). При увеличении тока от нуля до номинального значения I = I1 напряжение на зажимах источника ЭДС убывает практически по прямолинейному закону. При дальнейшем увеличении тока (при уменьшении сопротивления R) эта пропорциональность нарушается (кривая 1) при этом величена ЭДС E у некоторых источников уменьшается и возрастает значение внутреннего сопротивления Rвт.
  17. Что такое источники тока
  18. Вывод
  19. Что такое электродвижущая сила (ЭДС) и как ее рассчитать
  20. Что такое ЭДС: объяснение простыми словами
  21. Природа ЭДС
  22. Электромагнитная индукция (самоиндукция)
  23. ЭДС в быту и единицы измерения
  24. Как образуется ЭДС
  25. Электродвижущая сила (ЭДС) источника энергии
  26. Схемы замещения источников электрической энергии

Видео:Решение задачи. Расчет электрической цепи по законам КирхгофаСкачать

Решение задачи. Расчет электрической цепи по законам Кирхгофа

Источник эдс. идеальный и реальный источники

Видео:ЭДС и НАПРЯЖЕНИЕ: в чем отличие?Скачать

ЭДС и НАПРЯЖЕНИЕ: в чем отличие?

История

Электричество как источник энергии было известно ещё с древних времён, ведь сама природа генерирует его в огромных объёмах. Яркий пример — молния или электрический скат. Несмотря на такую близость к человеку, обуздать эту энергию удалось лишь в середине семнадцатого века: Отто фон Герике, бургомистр из Магдебурга, создал машину, позволяющую генерировать электростатический заряд. В середине восемнадцатого века Питер фон Мушенбрук — учёный из Голландии — создаёт первый в мире электрический конденсатор, названный Лейденской банкой в честь университета, где он работал.

Пожалуй, отсчёт эпохи настоящих открытий, посвящённых электричеству, принято начинать с работ Луиджи Гальвани и Алессандро Вольта, изучивших соответственно электрические токи в мышцах и возникновение тока в так называемых гальванических элементах. Дальнейшие исследования открыли нам глаза на связь электричества и магнетизма, а также на несколько очень полезных явлений (таких как электромагнитная индукция), без которых сегодня невозможно представить нашу жизнь.

Но мы не будем углубляться в магнитные явления и остановимся только на электрических. Итак, разберём, как же возникает электричество в гальванических элементах и что это вообще такое.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Видео:В чем отличие ЭДС, Напряжение, Потенциал, Падение НапряженияСкачать

В чем отличие ЭДС, Напряжение, Потенциал, Падение Напряжения

Идеальный источник тока (генератор)

Для начала рассмотрим абстрактный вариант: сила тока, созданная в этом устройстве, всегда одинаковая. Опираясь на закон Ома, можно легко сделать заключение, что напряжение находится в зависимости лишь от сопротивления подключенной нагрузки. Внутреннее сопротивление такого элемента питания имеет бесконечную величину, поэтому не воздействует на основной параметр. Вследствие того, что сила тока значение постоянное, то на значение мощности теоретического агрегата влияет только сопротивление подключенной нагрузки. В устройстве, при возникновении короткого замыкания, также сохраняется основное свойство источника.

Такой идеальный элемент можно создать лишь в теории, его применяют при моделировании электромагнитных процессов. На практике такой системы достичь невозможно, поэтому рассмотрим материальную вариацию.

Видео:Напряжение, Сопротивление, Сила тока. Проводник, РЕЗИСТОР, последовательное, параллельное соединениеСкачать

Напряжение, Сопротивление, Сила тока. Проводник, РЕЗИСТОР, последовательное, параллельное соединение

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства

Видео:2 7 Методы расчета цепей постоянного токаСкачать

2 7 Методы расчета цепей постоянного тока

Конструкция

Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:

Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.

Уравнения напряжения на зажимах источников эдс работающих в различных режимахАккумулятор

Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Уравнения напряжения на зажимах источников эдс работающих в различных режимахБатарейка

Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.

Уравнения напряжения на зажимах источников эдс работающих в различных режимахМеханический принцип устройства

Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.

Уравнения напряжения на зажимах источников эдс работающих в различных режимахТепловое устройство

Важно! Подобная конструкция помогает точно понять, как образуется энергия, которая впоследствии преобразуется в ток. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала

Видео:8 класс, 21 урок, Расчет электрических цепейСкачать

8 класс, 21 урок, Расчет электрических цепей

Так в чем же отличие

Для лучшего понимания, в чем состоит разница электродвижущей силы от напряжения, рассмотрим пример. Имеется источник электрической энергии бесконечной мощности, в котором отсутствует внутреннее сопротивление. В электрической цепи смонтирована нагрузка. В этом случае будет справедливо утверждение, что ЭДС и напряжение тождественно равны, т.е между этими понятиями отсутствует разница.

Однако, это идеальные условия, которые в реальной жизни не встречаются. Эти условия используют исключительно при расчетах. В реальной жизни учитывается внутреннее сопротивление источника питания. В этом случае ЭДС и напряжение имеют отличия.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

На рисунке представлено, какая разница будет в значениях электродвижущей силы и напряжении в реальных условиях. Вышеприведенная формула закона Ома для полной цепи описывает все процессы. При разомкнутой цепи на клеммах батарейки будет значение 1,5 Вольта. Это значение ЭДС. Подключив нагрузку, в данном случае это лампочка, на ней будет напряжение 1 вольт.

Разница от идеального источника заключается в наличии внутреннего сопротивления источника питания. На этом сопротивлении и происходит падение напряжения. Эти процессы описывает закон Ома для полной цепи.

Если измерительный прибор на зажимах источника электроэнергии показывает значение 1,5 Вольта, это будет электродвижущая сила, но повторим, при условии отсутствия нагрузки.

При подключении нагрузки на клеммах будет заведомо меньшее значение. Это и есть напряжение.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Видео:Электродвижущая сила (ЭДС)Скачать

Электродвижущая сила (ЭДС)

Применение

Рисунок 2. Генератор тока типа «токовое зеркало», собранный на биполярных транзисторах

Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частности операционных усилителей.

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (ИТУН). Применяется в основном для полевых транзисторов и электронных ламп.
  • Источник тока, управляемый током (ИТУТ). Применяется, как правило, для биполярных транзисторов.

В схеме токового зеркала (рисунок 2) ток нагрузки в правой ветви задается равным эталонному току в левой ветви, так что по отношению к нагрузке R2 эта схема выступает как источник тока.

Видео:Лабораторная работа №4 Сборка электрической цепи и измерение силы тока в её различных участкахСкачать

Лабораторная работа №4 Сборка электрической цепи и измерение силы тока  в её различных участках

Реальный генератор

Главное различие между реальным и идеальным устройством — наличие внутреннего сопротивления. Чем выше данный параметр, тем ближе элемент к улучшенному варианту. Из этого следует, что напряжение и мощность значения конечные, т. е имеют определенный рабочий диапазон. При этом система также обладает ограничением по присоединяемой нагрузке. При решении задач, реальное устройство изображают в качестве идеального, с подключенным в параллель внутренним сопротивлением.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Эксплуатация данного агрегата возможна при холостом ходе (без внешней нагрузки) вследствие того, что имеем замкнутый контур за счет внутреннего сопротивления. Ток на выходе во время такого режима снижается до нулевого значения. При подключении накоротко (режим короткого замыкания) получим максимальную величину, а выходное напряжение опустится до 0.

В качестве примера такого устройства, обратимся к катушке индуктивности. Это положение справедливо в момент размыкания цепи. Так разность потенциалов в таком режиме резко увеличивается по сравнению с предыдущим состоянием. Все дело в ЭДС самоиндукции возникающей в этом элементе. При увеличении напряжения катушка накапливает энергию, при снижении отдает ее в сеть.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Еще одним примером является вторичная обмотка трансформатора тока, которая в нормальных условиях работы всегда должна быть закорочена. В противном случае, если в ней произойдет разрыв, то она станет генератором. Все дело в законе сохранения энергии, так мощность на первичной и вторичной обмотке должна быть одинаковой. Параметры первичной обмотки неизменны, вследствие конструктивных особенностей трансформатора (обмотка имеет один виток). При обрыве во вторичной обмотке, упорядоченного движения заряженных частиц не будет, соответственно напряжение резко возрастет.

Видео:Лекция по электротехнике 1.4 - Источники электрической энергииСкачать

Лекция по электротехнике 1.4 - Источники электрической энергии

Примеры

Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени (t≪LR) после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) приводит к резкому возрастанию напряжения между контактами и к пробою зазора.

Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник переменного тока. Следовательно, размыкание вторичной цепи трансформатора тока недопустимо. Вместо этого при необходимости перекоммутации в цепи вторичной обмотки (без отключения линии) эту обмотку предварительно шунтируют.

Видео:Правила Кирхгофа: пример расчёта цепи с источниками токаСкачать

Правила Кирхгофа: пример расчёта цепи с источниками тока

Определение полюсов

Чтобы определить, который полюс источника постоянного напряжения является положительным, а какой — отрицательным, используются специальные «полюсоискатели», действие которых основано на явлении электролиза. Полюсоискатель представляет собой стеклянную ампулу, заполненную раствором поваренной соли с добавкой фенолфталеина. В ампулу снаружи введены электроды. При подключении к электродам источника напряжения начинается электролиз: на отрицательном полюсе идёт выделение водорода и образуется щелочная среда. Из-за наличия щёлочи фенолфталеин меняет свою окраску — краснеет, по красной окраске у электрода и судят о том, что он соединён с отрицательным полюсом источника напряжения.

Видео:Расчет электрической цепи постоянного тока методом узлового напряженияСкачать

Расчет электрической цепи постоянного тока методом узлового напряжения

Условия работы источников тока

Любой источник тока работает при определенных условиях. В отсутствие химической реакции внутри элементов не смогут образовываться заряженные частицы. Если будет отсутствовать анод и катод, то движения частиц не возникнет даже при наличии реакции.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах

В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.

Уравнения напряжения на зажимах источников эдс работающих в различных режимахИдеальный и реальный

Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно необходимо иметь в наличии приспособление ля преобразования полученной энергии.

Тепловой вариант не будет работать, если в его основу входит 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.

Уравнения напряжения на зажимах источников эдс работающих в различных режимахИсточники

Для выработки электрической энергии требуется выбрать источник тока, соответствующий потребностям в конкретной сфере применения. Существует несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и индивидуальные технические показатели.

Видео:Законы Кирхгофа - Теория и задачаСкачать

Законы Кирхгофа - Теория и задача

Свойства

Идеальный источник тока

Сила тока, текущего через идеальный источник тока, всегда одинакова по определению:

Напряжение на клеммах идеального источника тока (не путать с реальным источником!) зависит только от сопротивления R подключенной к нему нагрузки:

Мощность, отдаваемая источником тока в нагрузку:

Поскольку ток через идеальный источник тока всегда одинаков, то напряжение на его клеммах и мощность, передаваемая им в нагрузку, с ростом сопротивления нагрузки возрастают, достигая в пределе бесконечных значений.

Реальный источник

В линейном приближении любой реальный источник тока (не путать с описанным выше источником тока — моделью!) или иной двухполюсник может быть представлен в виде модели, содержащей, по меньшей мере, два элемента: идеальный источник и внутреннее сопротивление (проводимость). Одна из двух простейших моделей — модель Тевенина — содержит источник ЭДС, соединенный последовательно с сопротивлением, а другая, противоположная ей, модель Нортона — источник тока, соединенный параллельно с проводимостью (т. е. идеальным резистором, свойства которого принято характеризовать значением проводимости). Соответственно, реальный источник в линейном приближении может быть описан при помощи двух параметров: ЭДС E<displaystyle <mathcal >> источника напряжения (или силы тока I источника тока) и внутреннего сопротивления r (или внутренней проводимости y=1r).

Можно показать, что реальный источник тока с внутренним сопротивлением r эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление r и ЭДС E=I⋅r<displaystyle <mathcal >=Icdot r>.

Напряжение на клеммах реального источника тока равно

Мощность, отдаваемая реальным источником тока в сеть, равна

Реальные генераторы тока имеют различные ограничения (например, по напряжению на его выходе), а также нелинейные зависимости от внешних условий. В частности, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Видео:Лабораторная работа №5 по физике для 8 класса "Измерение напряжения на различных участках цепи"Скачать

Лабораторная работа №5 по физике для 8 класса "Измерение напряжения на различных участках цепи"

Источник ЭДС и его характеристика.

Электродвижущей
силой источника
(ЭДС) называется скалярная величина, численно равная
работе сторонних сил при перемещении единицы положительного заряда; ЭДС
источника числено равна разности потенциалов на концах разомкнутого элемента (без
нарузки
). Электродвижущая сила измеряется в тех же единицах, что и
напряжение. = / = Дж/Кл = В×А×с/А×с
= В (вольт). Тогда разность потенциалов (напряжение)
1 вольта равна 1 джоулю энергии необходимому для перемещения заряда в 1 кулон
из одной точки проводника в другую.

ЭДС
возникает при диффузии ионов в электролитах, при электромагнитной индукции, при
электромагнитной индукции, при освещении светом полупроводниковых элементов и
т.д.

Источник
электродвижущей силы
– это источники электромагнитной энергии,
характеризирующейся электродвижущей силой E и
внутренним электрическим сопротивлением Rвт.

Принципы
работы независимого источника ЭДС рассмотрим на примере простейшей цепи,
состоящей из этого источника ЭДС и резистивного элемента-приемника с переменным
сопротивлением R (сопротивлением проводов
пренебрегаем). На схеме замещения источник ЭДС представляют в виде двух
элементов: идеального источника ЭДС E,
внутреннее сопротивление которого равно нулю, и последовательного соединенного
с ним резистора, сопротивление которого Rвт.

Уравнения напряжения на зажимах источников эдс работающих в различных режимахУравнения напряжения на зажимах источников эдс работающих в различных режимах

Электродвижущая
сила E численно равна разности потенциалов или
напряжению U12X
между положительным 1 и отрицательным 2 зажимами источника энергии при
отсутствии в нем тока ( I=0 ), т.е. в режиме холостого
хода
(ХХ),

и
действует в источнике от зажима с меньшим потенциалом ( 2 ) к зажиму с большим
потенциалом (1). Направление действия ЭДС указывается в кружочке стрелкой. При
подключении к выводам 1 и 2 нагрузки R в замкнутом контуре
цепи возникает ток I; при этом напряжение на зажимах 1
и 2 уже не будет равно ЭДС E вследствие падения
напряжения на внутреннем сопротивлении Rвт источника ЭДС:

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Зависимость напряжения на зажимах источника ЭДС от
тока в нем носит название внешней характеристики источника, т.е. U12 = f (I).
При увеличении тока от нуля до номинального значения I = I1 напряжение на зажимах источника ЭДС убывает
практически по прямолинейному закону. При дальнейшем увеличении тока (при
уменьшении сопротивления R) эта пропорциональность нарушается (кривая 1) при
этом величена ЭДС E
у некоторых источников уменьшается и возрастает значение внутреннего
сопротивления Rвт.

Видео:Метод узловых потенциалов. Самое простое и понятное объяснение этого методаСкачать

Метод узловых потенциалов. Самое простое и понятное объяснение этого метода

Что такое источники тока

Источники тока – это элементы электрической цепи, который поддерживают энергию с заданными параметрами. При этом, энергоснабжение цепи не зависит от характеристик элементов, входящих в её состав, в частности, сопротивления.

Уравнения напряжения на зажимах источников эдс работающих в различных режимахПрибор для выработки тока

Различают идеальные и реальные устройства для выработки тока:

  • Идеальные определяются только благодаря гипотезам и теоретическим выкладкам. Так, учёные нередко определяют ряд условий, при которых ток имеет максимальные значения, приближенные к идеалу. То есть, осуществляется имитация идеального источника.
  • Реальные условия поддерживают заданные параметры выходного тока и напряжения. Любой прибор обеспечивает свою работу, при условии, что это позволяют сделать его технические характеристики.

Важно! Таким образом, максимальное значение тока и напряжения дают возможность определить, какой именно вариант источника будет использован в цепи – идеальный или реальный

Видео:Трехфазные электрические цепи │Теория ч. 1Скачать

Трехфазные электрические цепи │Теория ч. 1

Вывод

Из вышесказанного можно сделать вывод, что основная разница между ЭДС и напряжением состоит:

  1. Электродвижущая сила зависит от источника питания, а напряжение зависит от подключенной нагрузки и тока, протекающего по цепи.
  2. Электродвижущая сила это физическая величина, характеризующая работу сторонних сил неэлектрического происхождения, происходящих в цепях постоянного и переменного тока.
  3. Напряжение и ЭДС имеет единую единицу измерения – Вольт.
  4. U -величина физическая, равная работе эффективного электрического поля, производимой при переносе единичного пробного заряда из точки А в точку В.

Таким образом, кратко, если представить U в виде столба воды, то ЭДС можно представить что это насос, поддерживающий уровень воды на постоянном уровне. Надеемся, после прочтения статьи Вам стало понятно основное отличие!

Материалы по теме:

  • Чем отличается трансформатор от автотрансформатора
  • Разница между контактором и пускателем
  • Как узнать, есть ли напряжение в розетке

Опубликовано:
15.08.2019
Обновлено: 15.08.2019

Видео:Измерение напряжения на различных участках электрической цепиСкачать

Измерение напряжения на различных участках электрической цепи

Что такое электродвижущая сила (ЭДС) и как ее рассчитать

Электродвижущая сила или сокращено ЭДС – это способность источника тока ил по-другому питающий элемент, создавать в электрической цепи разность потенциалов. Элементами питания являются аккумуляторы или батареи. Это скалярная физическая величина, равная работе сторонних сил для перемещения одного заряда с положительной величиной. В данной статье будут рассмотрены теоритические вопросы ЭДС, как она образуется, а также для чего она может быть использована на практике и где используются, а главное как рассчитать ее.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Видео:Урок 250. Задачи на расчет электрических цепей - 1Скачать

Урок 250. Задачи на расчет электрических цепей - 1

Что такое ЭДС: объяснение простыми словами

Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи . Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов.

В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки. Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.

Электродвижущая сила (эдс), физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль контура. Если через Eстр обозначить напряжённость поля сторонних сил, то эдс в замкнутом контуре (L) равна , где dl — элемент длины контура. Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — нагреванием проводников.

Сторонние силы приводят в движение заряженные частицы внутри источников тока: генераторов, гальванических элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах — это химические силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Видео:Физика 10 класс. Лабораторная работа. Измерение ЭДС и внутреннего сопротивления источника токаСкачать

Физика 10 класс. Лабораторная работа. Измерение ЭДС и внутреннего сопротивления источника тока

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Опыт демонстрирует появление ЭДС в катушке при воздействии изменяющегося магнитного поля постоянного магнита. Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора. Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Видео:В чём разница между НАПРЯЖЕНИЕМ и ТОКОМСкачать

В чём разница между НАПРЯЖЕНИЕМ и ТОКОМ

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения. Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает. Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Как раз вот эти 0.3 В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль. Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Видео:Метод узловых потенциалов - определение токов. ЭлектротехникаСкачать

Метод узловых потенциалов - определение токов. Электротехника

Как образуется ЭДС

Идеальный источник ЭДС – генератор, внутреннее сопротивление которого равно нулю, а напряжение на его зажимах не зависит от нагрузки. Мощность идеального источника ЭДС бесконечна. Реальный источник ЭДС, в отличие от идеального, содержит внутреннее сопротивление Ri и его напряжение зависит от нагрузки (рис. 1., б), а мощность источника конечна. Электрическая схема реального генератора ЭДС представляет собой последовательное соединение идеального генератора ЭДС Е и его внутреннего сопротивления Ri.

На практике для того чтобы приблизить режим работы реального генератора ЭДС к режиму работы идеального, внутреннее сопротивление реального генератора Ri стараются делать как можно меньше, а сопротивление нагрузки Rн необходимо подключать величиной не менее чем в 10 раз большей величины внутреннего сопротивления генератора, т.е. необходимо выполнять условие: Rн >> Ri

Для того чтобы выходное напряжение реального генератора ЭДС не зависело от нагрузки, его стабилизируют применением специальных электронных схем стабилизации напряжения. Поскольку внутреннее сопротивление реального генератора ЭДС не может быть выполнено бесконечно малым, его минимизируют и выполняют стандартным для возможности согласованного подключения к нему потребителей энергии. В радиотехнике величины стандартного выходного сопротивления генераторов ЭДС составляют 50 Ом (промышленный стандарт) и 75 Ом (бытовой стандарт).

Например, все телевизионные приемники имеют входное сопротивление 75 Ом и подключены к антеннам коаксиальным кабелем именно такого волнового сопротивления. Для приближения к идеальным генераторам ЭДС источники питающего напряжения, используемые во всей промышленной и бытовой радиоэлектронной аппаратуре, выполняют с применением специальных электронных схем стабилизации выходного напряжения, которые позволяют выдерживать практически неизменное выходное напряжение источника питания в заданном диапазоне токов, потребляемых от источника ЭДС (иногда его называют источником напряжения).

На электрических схемах источники ЭДС изображаются так: Е — источник постоянной ЭДС, е(t) – источник гармонической (переменной) ЭДС в форме функции времени. Электродвижущая сила Е батареи последовательно соединенных одинаковых элементов равна электродвижущей силе одного элемента Е, умноженной на число элементов n батареи: Е = nЕ.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Электродвижущая сила (ЭДС) источника энергии

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока). Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС), которая создает и длительное время поддерживает разность потенциалов между концами проводника.

Схемы замещения источников электрической энергии

Свойства источника электрической энергии описываются ВАХ Уравнения напряжения на зажимах источников эдс работающих в различных режимах, называемой внешней характеристикой источника. Далее в этом разделе для упрощения анализа и математического описания будут рассматриваться источники постоянного напряжения (тока). Однако все полученные при этом закономерности, понятия и эквивалентные схемы в полной мере распространяются на источники переменного тока. ВАХ источника может быть определена экспериментально на основе схемы, представленной на рис. 4,а. Здесь вольтметр V измеряет напряжение на зажимах 1-2 источника И, а амперметр А – потребляемый от него ток I, величина которого может изменяться с помощью переменного нагрузочного резистора (реостата) RН.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она имеет две характерные точки, которые соответствуют:

а – режиму холостого хода Уравнения напряжения на зажимах источников эдс работающих в различных режимах;

б –режиму короткого замыкания Уравнения напряжения на зажимах источников эдс работающих в различных режимах.

Для большинства источников режим короткого замыкания (иногда холостого хода) является недопустимым. Токи и напряжения источника обычно могут изменяться в определенных пределах, ограниченных сверху значениями, соответствующими номинальному режиму (режиму, при котором изготовитель гарантирует наилучшие условия его эксплуатации в отношении экономичности и долговечности срока службы). Это позволяет в ряде случаев для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем участке m-n (см. рис. 4,б) прямой, положение которой определяется рабочими интервалами изменения напряжения и тока. Следует отметить, что многие источники (гальванические элементы, аккумуляторы) имеют линейные ВАХ.

Прямая 2 на рис. 4,б описывается линейным уравнением

Уравнения напряжения на зажимах источников эдс работающих в различных режимах,(1)

где Уравнения напряжения на зажимах источников эдс работающих в различных режимах— напряжение на зажимах источника при отключенной нагрузке (разомкнутом ключе К в схеме на рис. 4,а); Уравнения напряжения на зажимах источников эдс работающих в различных режимахвнутреннее сопротивление источника.

Уравнение (1) позволяет составить последовательную схему замещения источника (см. рис. 5,а). На этой схеме символом Е обозначен элемент, называемый идеальным источником ЭДС. Напряжение на зажимах этого элемента Уравнения напряжения на зажимах источников эдс работающих в различных режимахне зависит от тока источника, следовательно, ему соответствует ВАХ на рис. 5,б. На основании (1) у такого источника Уравнения напряжения на зажимах источников эдс работающих в различных режимах. Отметим, что направления ЭДС и напряжения на зажимах источника противоположны.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Если ВАХ источника линейна, то для определения параметров его схемы замещения необходимо провести замеры напряжения и тока для двух любых режимов его работы.

Существует также параллельная схема замещения источника. Для ее описания разделим левую и правую части соотношения (1) на Уравнения напряжения на зажимах источников эдс работающих в различных режимах. В результате получим

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Уравнения напряжения на зажимах источников эдс работающих в различных режимах,(2)

где Уравнения напряжения на зажимах источников эдс работающих в различных режимах; Уравнения напряжения на зажимах источников эдс работающих в различных режимахвнутренняя проводимость источника.

Уравнению (2) соответствует схема замещения источника на рис. 6,а.

Уравнения напряжения на зажимах источников эдс работающих в различных режимах

На этой схеме символом J обозначен элемент, называемый идеальным источником тока. Ток в ветви с этим элементом равен Уравнения напряжения на зажимах источников эдс работающих в различных режимахи не зависит от напряжения на зажимах источника, следовательно, ему соответствует ВАХ на рис. 6,б. На этом основании с учетом (2) у такого источника Уравнения напряжения на зажимах источников эдс работающих в различных режимах, т.е. его внутреннее сопротивление Уравнения напряжения на зажимах источников эдс работающих в различных режимах.

Отметим, что в расчетном плане при выполнении условия Уравнения напряжения на зажимах источников эдс работающих в различных режимахпоследовательная и параллельная схемы замещения источника являются эквивалентными. Однако в энергетическом отношении они различны, поскольку в режиме холостого хода для последовательной схемы замещения мощность равна нулю, а для параллельной – нет.

Кроме отмеченных режимов функционирования источника, на практике важное значение имеет согласованный режим работы, при котором нагрузкой RН от источника потребляется максимальная мощность

Уравнения напряжения на зажимах источников эдс работающих в различных режимах,(3)

Условие такого режима

Уравнения напряжения на зажимах источников эдс работающих в различных режимах,(4)

В заключение отметим, что в соответствии с ВАХ на рис. 5,б и 6,б идеальные источники ЭДС и тока являются источниками бесконечно большой мощности.

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия, 1972. –240 с.
  4. Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. –448 с.

Контрольные вопросы и задачи

  1. Может ли внешняя характеристик источника проходить через начало координат?
  2. Какой режим (холостой ход или короткое замыкание) является аварийным для источника тока?
  3. В чем заключаются эквивалентность и различие последовательной и параллельной схем замещения источника?
  4. Определить индуктивность L и энергию магнитного поля WМкатушки, если при токе в ней I=20А потокосцепление y =2 Вб.

Ответ: L=0,1 Гн; WМ=40 Дж.

  1. Определить емкость С и энергию электрического поля WЭконденсатора, если при напряжении на его обкладках U=400 В заряд конденсатора q=0,2´ 10-3 Кл.

Ответ: С=0,5 мкФ; WЭ=0,04 Дж.

  1. У генератора постоянного тока при токе в нагрузке I1=50Анапряжение на зажимах U1=210 В,а притоке, равном I2=100А, оно снижается до U2=190 В.
  2. Определить параметры последовательной схемы замещения источника и ток короткого замыкания.

Ответ: Уравнения напряжения на зажимах источников эдс работающих в различных режимах

  1. Вывести соотношения (3) и (4) и определить максимальную мощность, отдаваемую нагрузке, по условиям предыдущей задачи.

Ответ: Уравнения напряжения на зажимах источников эдс работающих в различных режимах

Поделиться или сохранить к себе: