Квадратные уравнения 8 класс алгебра
Учитель: Федулкина Т.А.
- Что такое квадратные уравнения. Виды уравнений.
Формула квадратного уравнения: ax 2 +bx+c=0,где a≠0, где x — переменная, a,b,c — числовые коэффициенты.
Пример полного квадратного уравнения:
3x 2 -3x+2=0
x 2 -16x+64=0
Решение полных квадратных уравнений сводится к нахождению дискриминанта:
Формула дискриминанта: D=b 2 -4aс
Если D>0, то уравнение имеет два корня и находим эти корни по формуле:
Если D=0, уравнение имеет один корень
Если D 2 -x-6=0
Записываем сначала, чему равны числовые коэффициенты a, b и c.
Коэффициент a всегда стоит перед x 2 , коэффициент b всегда перед переменной x, а коэффициент c – это свободный член.
a=1,b=-1,c=-6
D=b 2 -4ac=(-1) 2 -4∙1∙(-6)=1+24=25
Дискриминант больше нуля, следовательно, у нас два корня, найдем их:
№2 x 2 +2x+1=0
Записываем, чему равны числовые коэффициенты a,b и c.
a=1,b=2,c=1
D=b 2 -4ac=(2) 2 -4∙1∙1=4-4=0
Дискриминант равен нулю, следовательно, один корень:
x=-b/2a=-2/(2∙1)=-1
№3 7x 2 -x+2=0
Записываем, чему равны числовые коэффициенты a,b и c.
a=7,b=-1,c=2
D=b 2 -4ac=(-1) 2 -4∙7∙2=1-56=-55
Дискриминант меньше нуля, следовательно, корней нет.
Рассмотрим неполное квадратное уравнение:
ax 2 +bx=0, где числовой коэффициент c=0.
Пример как выглядят такие уравнения: x 2 -8x=0, 5x 2 +4x=0.
Чтобы решить такое уравнение необходимо переменную x вынести за скобки. А потом каждый множитель приравнять к нулю и решить уже простые уравнения.
ax 2 +bx=0 x(ax+b)=0 x1=0 x2=-b/a
№1 3x 2 +6x=0
Выносим переменную x за скобку,
x(3x+6)=0
Приравниваем каждый множитель к нулю,
x1=0 3x+6=0 3x=-6 x2=-2
№2 x 2 -x=0
Выносим переменную x за скобку,
x(x-1)=0
Приравниваем каждый множитель к нулю,
x1=0
x2=1
Рассмотрим неполное квадратное уравнение:
ax 2 +c=0, где числовой коэффициент b=0.
Чтобы решить это уравнение, нужно записать так:
x 2 =c/a , если число c/a будет отрицательным числом, то уравнение не имеет решения.
А если c/a положительное число, то решение выглядит таким образом: корень квадратного уравнения
№1 x 2 +5=0
x 2 =-5, видно, что -5 2 -12=0
3x 2 =12
x 2 =12/3
x 2 =4
x1=2
2) Тренировочные задания на решение квадратных уравнений 8 класс алгебра.
Задания для устного решения:
- Решите неполное квадратное уравнение:
Видео:Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.Скачать
Как найти дискриминант квадратного уравнения
О чем эта статья:
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Понятие квадратного уравнения
Уравнение — это равенство, содержащее переменную, значение которой нужно найти.
Например, х + 8 = 12 — это уравнение, содержащее переменную х.
Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.
Например, если х = 5, то при подстановке в уравнение мы получим:
13 = 12 — противоречие.
Значит, х = 5 не является корнем уравнения.
Если же х = 4, то при подстановке в уравнение мы получим:
12 = 12 — верное равенство.
Значит, х = 4 является корнем уравнения.
Решить уравнение — значит найти все его корни или доказать, что их не существует.
Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Если все коэффициенты в уравнении отличны от нуля, то уравнение называется полным.
Такое уравнение можно решить с помощью формулы дискриминанта.
Видео:Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать
Понятие дискриминанта
Дискриминант квадратного уравнения — это выражение, равное b 2 − 4ac. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.
Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Как решать квадратные уравнения через дискриминант
Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:
Определим, чему равны коэффициенты a, b, c.
Вычислим значение дискриминанта по формуле D = b2 − 4ac.
Если дискриминант D 0, то у уравнения две корня, равные
Чтобы запомнить алгоритм решения полных квадратных уравнений и с легкостью его использовать, сохраните себе шпаргалку:
Видео:Квадратичная функция и ее график. 8 класс.Скачать
Примеры решения квадратных уравнений с помощью дискриминанта
Пример 1. Решить уравнение: 3x 2 — 4x + 2 = 0.
- Определим коэффициенты: a = 3, b = -4, c = 2.
- Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 3 * 2 = 16 — 24 = -8.
Ответ: D 2 — 6x + 9 = 0.
- Определим коэффициенты: a = 1, b = -6, c = 9.
- Найдем дискриминант: D = b 2 — 4ac = (-6) 2 — 4 * 1 * 9 = 36 — 36 = 0.
D = 0, значит уравнение имеет один корень:
Ответ: корень уравнения 3.
Пример 3. Решить уравнение: x 2 — 4x — 5 = 0.
- Определим коэффициенты: a = 1, b = -4, c = -5.
- Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 1 * (-5) = 16 + 20 = 36.
D > 0, значит уравнение имеет два корня:
Ответ: два корня x1 = 5, x2 = -1.
Разобраться в решении квадратных уравнений на практике с классным преподавателем можно на курсах по математике в Skysmart.
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Уравнения на дискриминант 8 класс задания
Найдите корни уравнения .
Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.
Решите уравнение .
Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.
По теореме, обратной теореме Виета, сумма корней равна 1, а их произведение −6.
Тем самым, это числа −2 и 3.
Решите уравнение .
Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.
Запишем уравнение в виде По теореме, обратной теореме Виета, сумма корней равна −3, а их произведение −4.
🎥 Видео
Алгебра 8 класс (Урок№29 - Решение задач с помощью квадратных уравнений.)Скачать
Решение биквадратных уравнений. 8 класс.Скачать
КВАДРАТНОЕ УРАВНЕНИЕ дискриминантСкачать
Формула корней квадратного уравнения. Алгебра, 8 классСкачать
Все про уравнения для задания 9 на ОГЭ 2024 по математикеСкачать
Как решают уравнения в России и СШАСкачать
Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать
Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)Скачать
Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать
Дробно-рациональные уравнения. 8 класс.Скачать
Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать