- Опубликовано 16.09.2020Подготовка к ЕГЭ
- Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем
- Оставить Комментарий Отменить ответ
- Выбери тему
- Самые популярные записи
- StudyWay
- Помощь
- Что за курс и что тебя там будет ждать?
- Математика. Справочные материалы по подготовке к экзаменам. Простейшие уравнения. Линейные, квадратные, рациональные, иррациональные, показательные уравнения.
- Линейные, квадратные, кубические уравнения
- Линейные уравнения
- Квадратные уравнения
- Решение неполных квадратных уравнений
- Дробно рациональные уравнения
- 📽️ Видео
Видео:Базовая математика ЕГЭ-2024|Уравнения линейные,квадратные, дробно-рациональные и иррациональные. №17Скачать
Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем
На сегодняшний день ЕГЭ по математике проходит в форме решения заданий, содержащихся в контрольно-измерительных материалах, при этом, ответы на задания выносят на отдельный бланк.
Уравнения могут быть следующих видов:
В данной статье рассмотрена профильная математика, а именно раздел по видам и системам рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений.
При решении уравнений нужно помнить основные термины:
— Корнем уравнения называют неизвестное число, которое нужно найти;
— Решение уравнения предполагает нахождение его корня;
— Уравнения, у которых совпадают решения называют равносильными;
— ОДЗ – область допустимых значений;
— Если возможно заменить переменные, то нужно это выполнить;
— После решения уравнения необходимо провести проверку на правильность нахождения корня.
Итак, рассмотрим каждый вид уравнений по отдельности, включая примеры решения.
- Рациональные уравнения – уравнения, у которых, как правило, слева расположено рациональное выражение, а справа – ноль.
Рациональным уравнением называют уравнение вида r(х)=0.
Если обе части уравнения являются рациональными выражениями, то рациональные уравнения называют целыми.
Дробно-рациональным называют уравнение, которое содержит дробное выражение.
Порядок действий при решении данного вида уравнения должен быть следующий:
— Все члены должны быть переведены в левую часть уравнения;
— Данную часть уравнения нужно представить в виде дроби p(x)/q(x);
— Для полученного решения нужно провести проверку, то есть.
При решение этого рационального уравнения понадобится формула (а-в)2=а2-2ав+в2.
Рассмотрим ещё один пример решения рационального уравнения:
На основе примеров показано, что рациональные уравнения могут быть с разным количеством переменных.
Иррациональными уравнениями считают уравнения с переменной под корнем. Для того, чтобы определить является ли уравнение иррациональным нужно просто посмотреть на корень переменной. Следует учитывать, что в некоторых учебниках по математике иррациональное уравнение определяют другим способом.
Способы решения таких уравнений:
— Возвести в степень обе части уравнения;
— Ввести новые переменные;
Пример решения уравнения по первому способу:
Пример решения по второму способу:
- Показательные уравнения
Показательные уравнения – уравнение, содержащее неизвестный показатель.
В учебниках по математике разных авторов определение показательного уравнения может отличаться. Обычно такие отличия касаются незначительных деталей.
Как правило, это уравнения вида af(x)=ag(x), где а не равно одному и число а больше нуля. Из этого следует, что f(x)=g(x).
— Уравнение с одним основанием;
— Уравнение с равными основаниями.
Существует следующие способы решения таких уравнений:
— Использовать метод логарифмов;
— Привести уравнение к квадратному виду;
— Вынести за скобку общий множитель;
— Ввести новую переменную.
Итак, как решить показательное уравнение? Любое по сложности уравнение нужно привести в простую форму.
Рассмотрим наиболее простой пример решения показательного уравнения:
Для решения данного уравнения следует 2 возвести во вторую степень.
Решение даже простейших показательных уравнений имеет большую значимость. Поэтому далее вам будет легче решать уравнения более сложного уровня.
Данная тема является одной из самых сложных, поэтому следует внимательно подойти к изучению данной темы. Известны три формулы тригонометрических уравнений, запомнить которые не составляет особой сложности.
Наиболее простое тригонометрическое уравнение имеет вид sin x=a, cos x=a, tg x=а, а – число действительное.
Способы решения таких уравнений:
— Решение с помощью форму и приведение к простейшему;
— Ввод других переменных;
— Разложить уравнение по множителям.
Пример решения тригонометрического уравнения:
Здесь нужно рисовать окружность, далее выделить точки с координатой ½, соответственно, это точки 5п/6 и п/6. Если пройти по окружности, исходя из данных точек, то х=п/6+2пk, x=5п/6+2пn. При этом синус и косинус принадлежат промежутку [-1;1]. Если при решении уравнения в его правой части стоит число не принадлежащее промежутку, считается, что уравнение не имеет решения.
Также рассмотрим пример решения уравнения, разложив его по множителям.
Нужно применить формулу sin2x = 2sinxcosx.
2sinxcosx – sinx = 0.
sinx (2cosx – 1) = 0.
Таким образом, если один из множителей равен нулю, то решение уравнения также равно нулю.
Далее, sinx=0, x=пk.
- Логарифмические уравнения
Особое значение имеет подготовка ЕГЭ по математике логарифмы, это обусловлено тем, что в КИМах чаще всего встречаются именно этого вида уравнения.
Логарифмическое уравнение – это уравнение с неизвестной величиной, находящейся внутри логарифма.
Примерами логарифмических уравнений являются уравнения следующего вида:
Способы решения уравнений данного вида:
— Применять способ уравнивания к единице;
— Применять способ умножать на единицу;
— Применять доступные правила логарифмов;
— Введение другого основания;
— Возвести в степень.
Самым простым логарифмическим уравнением принято считать уравнение вида log a x = b, при этом основание a>0,a≠1.
Пример решения уравнения:
Сначала следует найти значение области, то есть ОДЗ. При этом нужно помнить, что под логарифмом выражение всегда положительное. Воспользуемся логарифмическим определением, представим х степью основания 2 логарифма, степень будет равна 3.
Решение уравнения является ОДЗ, то есть корень уравнения найден.
Таким образом, подобное задание ЕГЭ по математике легко можно решить, зная логарифмы и способы их решения.
Оставить Комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.
Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Выбери тему
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Самые популярные записи
- Наука. Основные особенности научного мышления. Естественные и социально гуманитарные науки (3 293)
- ЕГЭ по обществознанию: мышление и деятельность; потребности и интересы (2 238)
- Строение растения. Стебель, лист и цветок. (2 196)
- Свобода и необходимость в человеческой деятельности. Свобода и ответственность. (2 189)
Видео:ЕГЭ. Математика. База. #Урок8. Линейные, квадратные, рациональные, иррациональные уравненияСкачать
StudyWay
Видео:Уравнения (линейные, квадратные, кубические, рациональные, иррациональные) - Задание №5 из ЕГЭ 2021Скачать
Помощь
© 2021 StudyWay. Все права защищены.
Ты можешь попробовать 3 наших закрытых занятия из курса «Прорыв».
Записаться можно через Instagram
Для этого напиши в Direct (в личку) кодовое слово «Пробный«
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Что за курс и что тебя там будет ждать?
12 мощнейших онлайн занятий по 2 часа в формате вебинаров.
Содержание вебинара: повторение предыдущей темы, теория, перерыв и практика.
Воркбук (рабочая тетрадь)абсолютно к каждому уроку со всей необходимой теорией к этой теме и практикой.
Личный куратор — это твой помощник во всех учебных вопросах.
Они занимаются проверкой твоих домашних заданий, поддерживают и мотивируют двигаться дальше, даже когда хочется сдаться.
На собственной онлайн платформе тебя ждут
Домашние задания, которые необходимо решать после каждого занятия.
Все задания построены на базе создателей ЕГЭ — Котова / Лискова.
К каждому тестовому вопросу будет подробный разбор от главного куратора.
А задания, где необходимо оценить ответ (вторая часть) — будет проверять твой личный куратор и писать подробный комментарий про ошибки
Общий чат единомышленников, поделенный на команды.
Название даете совместно (например «Воробушки»)
Ты будешь двигаться сообща с однокурсниками, поддерживая и мотивируя друг друга.
За лучшую командную успеваемость всей команде будут выделены призы в конце каждого месяца (скидка на обучение, стикерпаки и т.д).
Личный помощник — это твой верный друг и помощник, который поможет тебе со всеми техническими вопросами, ответит на вопросы про поступление, да и просто может обсудить какие-то личные вопросы, поделиться переживаниями.
Доступ к уникальной «Академии косатиков».
Там ты сможешь найти:
Банк теории, банк планов, банк аргументов, курсы по работе со всей второй частью, термины, курсы по саморазвитию, полезные лайфхаки и всю подробную информация о ЕГЭ.
Игровая система на нашей платформе StudyWay👇
За выполнение заданий получаешь баллы (XP).
При достижении нового уровня у тебя открываются новые персонажи из Marvel, DC Comics, Игра престолов и Star Wars, а также на каждом новом уровне тебя ждут призы от нашей школы.
Основная ценность курса
1. Изучение теории и практики с учетом изменений в ЕГЭ 2022
2. Заложение фундамента и основы предмета
3. Прохождение всей теории для первой части
4. Нарешивание всех возможных типов заданий
5. Повышение результата с 0 до 60 баллов
Отличия тарифа «Стандарт от «Профи».
Дополнительные домашние задания
необходимо выполнять. Это значительно повысит твою успеваемость и улучшит показатели.
Дополнительное объяснение
твой личный куратор объяснит тебе тему повторно, если останется что-то не понятным
Групповые зачеты
у тебя будут зачеты с твоим личным куратором в мини группах по 5 человек. Там спрашиваются пройденные темы, термины и так далее.
Карта памяти
будешь восполнять все пройденные в удобной интеллект карте и в конце учебы у тебя выйдет файл с полноценной теорией по всем темам и разделам.
Персональный звонок куратору
1 раз в месяц ты можешь позвонить своему куратору и обсудить все волнующие тебя вопросы в течении 20 минут.
Секретный квест
1 раз в месяц ты будешь созваниваться с другим учеником курса и проводить совместные зачеты, тем самым познакомишься с новыми ребятами из других городов, уберешь страхи знакомства, повторишь и закрепишь пройденные темы.
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Математика. Справочные материалы по подготовке к экзаменам. Простейшие уравнения. Линейные, квадратные, рациональные, иррациональные, показательные уравнения.
Два уравнения называются равносильными если множества их корней совпадают; в том числе, уравнения, не имеющие корней, считаются равносильными. Используется обозначение: f x gx hx x () () () () = ⇔ =ϕ . Если все решения первого уравнения являются решениями второго уравнения (множество решений первого уравнения является подмножеством решений второго уравнения), то второе уравнение называется следствием первого уравнения. Используется обозначение: f x gx hx x () () () () = ⇒ =ϕ . Таким образом, два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.
Теорема 1. Если любое выражение, входящее в уравнение, заменить тождественно равным ему на области определения уравнения выражением, то получим уравнение, равносильное данному.
Теорема 2. Если к обеим частям уравнения прибавить выражение, имеющее смысл на области определения уравнения, то получим уравнение, равносильное данному. Следствие. Если любое слагаемое перенести из одной части уравнения в другую, поменяв его знак на противоположный, то получим уравнение, равносильное данному. Теорема 3. Если обе части уравнения умножить (разделить) на выражение, имеющее смысл и отличное от нуля на области определения уравнения, то получим уравнение, равносильное данному.
Видео:8 класс, 38 урок, Иррациональные уравненияСкачать
Линейные, квадратные, кубические уравнения
Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.
Видео:Как решать линейные и квадратные уравненияСкачать
Линейные уравнения
Линейным называется такое уравнение, в котором неизвестное $x$ находится в числителе уравнения и без показателей. Например: $2х – 5 = 3$
Линейные уравнения сводятся к виду $ax = b$, которое получается при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей уравнения на число, отличное от нуля.
$5 (5 + 3х) — 10х = 8$
$25 + 15х — 10х = 8$
Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.
$15х — 10х = 8 — 25$
Приведем подобные слагаемые.
$5х = -17$ — это конечный результат преобразований.
После преобразований к виду $ax = b$, где, a=0, корень уравнения находим по формуле $х = /$
Видео:Как решать уравнения с дробью? #shortsСкачать
Квадратные уравнения
Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.
Числа $a, b, c$ называются коэффициентами квадратного уравнения.
- $a$ — старший коэффициент;
- $b$ — средний коэффициент;
- $c$ — свободный член.
Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.
Решение неполных квадратных уравнений
Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.
1. Вынесем общий множитель $x$ за скобки.
Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:
2. Решаем получившиеся уравнения каждое отдельно.
Вынесем х как общий множитель за скобки:
Приравняем каждый множитель к нулю и найдем корни уравнения.
$x = 0$ или $4х — 5 = 0$
$х_1 = 0 х_2 = 1,25$
Ответ: $х_1 = 0; х_2 = 1,25$
Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$
Для решения данного неполного квадратного уравнения выразим $x^2$.
При решении последнего уравнения возможны два случая:
2. $D = 0$. В данном случае решение даёт два двукратных корня:
Извлечем кубический корень из обеих частей
Соберем известные слагаемые в правой части
Дробно рациональные уравнения
Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.
Чтобы решить дробное уравнение, необходимо:
- найти общий знаменатель дробей, входящих в уравнение;
- умножить обе части уравнения на общий знаменатель;
- решить получившееся целое уравнение;
- исключить из его корней те, которые обращают в ноль общий знаменатель.
1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
$4x · x + 1 · x — / = 0$
3. решаем полученное уравнение
Решим вторым устным способом, т.к. $а + с = b$
Тогда $х_1 = — 1, х_2 = /$
4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $х_1 = — 1, х_2 = /$
При решении уравнения с двумя дробями можно использовать основное свойство пропорции.
Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
Воспользуемся основным свойством пропорции
Раскроем скобки и соберем все слагаемые в левой части уравнения
Решим данное квадратное уравнение первым устным способом, т.к.
В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
📽️ Видео
Как решать линейные уравнения. Решение квадратных уравнений.Скачать
Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать
Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Задание 9 ОГЭ 2021. Как решать линейные, квадратные и рациональные уравнения. Полный разбор.Скачать
Задание 1 ЕГЭ 2022 Линейные, квадратные, кубические уравнения МатематикаСкачать
Как решают уравнения в России и СШАСкачать
Рациональные и иррациональные числа за 5 минутСкачать
Иррациональные уравнения и их системы. 11 класс.Скачать
Задание 1. Часть 1. Линейные, квадратные, кубические, дробно-рациональные и иррациональные уравненияСкачать
Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать