Уравнения колмогорова пример решения задачи

Теория случайных процессов и теория массового обслуживания

Теорией случайных процессов называют раздел математики, изучающий закономерности случайных явлений в динамике их развития. Теория случайных процессов — это сравнительно новый раздел теории вероятностей, особенно интенсивно развивающийся в настоящее время в связи с широким кругом его практических приложений.

Содержание:

Видео:Матрица интенсивностей. Система уравнений КолмогороваСкачать

Матрица интенсивностей. Система уравнений Колмогорова

Элементы теории случайных процессов и теории массового обслуживания

Теория случайных процессов — это раздел математической науки, который изучает закономерности случайных явлений в динамике их развития.

Определение случайного процесса и его характеристики

Случайным процессом Уравнения колмогорова пример решения задачиназывается процесс, значение которого при любом значении аргумента Уравнения колмогорова пример решения задачиявляется случайной величиной.

Реализацией случайного процесса называется детерминированная функция Уравнения колмогорова пример решения задачив которую преобразуется случайный процесс Уравнения колмогорова пример решения задачивследствие испытания, то есть его траектория.

Количество реализаций определенного случайного процесса изображено на рис. 4.1. Пусть сечение процесса при данном Уравнения колмогорова пример решения задачиявляется непрерывной случайной величиной. Тогда случайный процесс Уравнения колмогорова пример решения задачипри данном Уравнения колмогорова пример решения задачиопределяется плотностью вероятности Уравнения колмогорова пример решения задачи

Очевидно, что плотность вероятности Уравнения колмогорова пример решения задачине является исчерпывающей задачей случайного процесса Уравнения колмогорова пример решения задачипоскольку она не выражает зависимости между его сечениями в разные моменты времени.

Случайный процесс Уравнения колмогорова пример решения задачипредставляет собой совокупность всех сечений при всех возможных значениях Уравнения колмогорова пример решения задачипоэтому для его задания необходимо рассматривать многомерную случайную величину Уравнения колмогорова пример решения задачиобразованную из всех сечений этого процесса.

Таких сечений бесконечно много, но для задания случайного процесса удается ограничиться сравнительно небольшим количеством сечений.

Уравнения колмогорова пример решения задачи

Случайный процесс имеет порядок Уравнения колмогорова пример решения задачиесли он полностью определяется плотностью общего распределения Уравнения колмогорова пример решения задачипроизвольных сечений процесса, то есть плотностью Уравнения колмогорова пример решения задачи-мерной случайной величины Уравнения колмогорова пример решения задачигде Уравнения колмогорова пример решения задачи— сечение случайного процесса Уравнения колмогорова пример решения задачив момент времени Уравнения колмогорова пример решения задачи

Случайный процесс может быть задан числовыми характеристиками.

Математическим ожиданием случайного процесса Уравнения колмогорова пример решения задачиназывается детерминированная функция Уравнения колмогорова пример решения задачикоторая при любом значении переменной Уравнения колмогорова пример решения задачиравна математическому ожиданию соответствующего сечения случайного процесса Уравнения колмогорова пример решения задачито есть Уравнения колмогорова пример решения задачи

Дисперсией случайного процесса Уравнения колмогорова пример решения задачиназывается детерминированная функция Уравнения колмогорова пример решения задачикоторая при любом значении переменной Уравнения колмогорова пример решения задачиравна дисперсии соответствующего сечения случайного процесса Уравнения колмогорова пример решения задачито есть Уравнения колмогорова пример решения задачи

Средним квадратическим отклонением Уравнения колмогорова пример решения задачислучайного процесса Уравнения колмогорова пример решения задачиназывается арифметическое значение квадратного корня из его дисперсии, то есть Уравнения колмогорова пример решения задачи

Математическое ожидание случайного процесса характеризует среднюю траекторию всех возможных его реализаций, а его дисперсия или среднее квадратическое отклонение — разброс реализаций относительно средней траектории.

Корреляционной функцией случайного процесса Уравнения колмогорова пример решения задачиназывается детерминированная функция

Уравнения колмогорова пример решения задачи

двух переменных Уравнения колмогорова пример решения задачии Уравнения колмогорова пример решения задачикоторая для каждой пары переменных Уравнения колмогорова пример решения задачии Уравнения колмогорова пример решения задачиравна ковариации соответствующих сечений Уравнения колмогорова пример решения задачии Уравнения колмогорова пример решения задачислучайного процесса.

Корреляционная функция Уравнения колмогорова пример решения задачихарактеризует не только степень близости линейной зависимости между двумя сечениями, а и разброс этих сечений относительно математического ожидания Уравнения колмогорова пример решения задачи

Поэтому рассматривается также нормированная корреляционная функция случайного процесса.

Нормированной корреляционной функцией случайного процесса Уравнения колмогорова пример решения задачиназывается функция

Уравнения колмогорова пример решения задачи

Пример. Случайный процесс определяется формулой Уравнения колмогорова пример решения задачи Уравнения колмогорова пример решения задачигде Уравнения колмогорова пример решения задачи— случайная величина. Найти основные характеристики этого процесса, если Уравнения колмогорова пример решения задачи

Решение. Согласно свойствам математического ожидания и дисперсии получим:

Уравнения колмогорова пример решения задачи

Находим далее корреляционную функцию

Уравнения колмогорова пример решения задачи

а также нормированную корреляционную функцию

Уравнения колмогорова пример решения задачи

Случайные процессы можно классифицировать в зависимости от того, плавно или скачкообразно изменяются состояния системы, в которой они происходят, конечное или бесконечное множество этих состояний. Среди случайных процессов особое место занимают марковские случайные процессы, которые составляют основу теории массового обслуживания.

Основные понятия теории массового обслуживания

На практике часто приходится сталкиваться с системами, предназначенными для многоразового использования во время решения однотипных задач. Процессы, которые при этом происходят, называются процессами обслуживания, а соответствующие системы — системами массового обслуживания (СМО).

Примерами таких систем являются телефонные системы, ремонтные мастерские, вычислительные комплексы, кассы, где продаются железнодорожные или авиабилеты, магазины, парикмахерские и т.п.

Каждая МСО состоит из определенного количества обслуживаемых единиц (приборов, пунктов, станций), которые будем называть каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и т.п. По количеству каналов СМО делятся на одно- и многоканальные.

Заявки поступают в СМО конечно нерегулярно, а случайно, образуя так называемый случайный поток заявок (ссылок). Обслуживание заявок также длится в течение определенного случайного времени. Учитывая случайность потока заявок и время обслуживания, СМО загружаются неравномерно: в определенные периоды накапливается очень много заявок (они или стают в очередь, или оставляют СМО не обслуженными), в другие периоды СМО работает с малой загрузкой или простаивает.

Предметом теории массового обслуживания является построение математических моделей, которые связывают заданные условия работы СМО с показателями ее эффективности, которые описывают способность этой системы обрабатывать потоки заявок.

Показателями эффективности СМО являются:

  • — среднее количество заявок, которые она обслуживает за единицу времени;
  • — среднее количество заявок в очереди;
  • — среднее время ожидания обслуживания;
  • — вероятность отказа в обслуживании без ожидания;
  • — вероятность того, что количество заявок в очереди превышает определенное значение и т.д.

СМО делятся на два основных класса: СМО с отказами и СМО с ожиданием (очередью).

В СМО с отказами заявка, которая поступила в момент, когда все каналы были заняты, получив отказ, оставляет СМО и в дальнейшем процессе обслуживания не участвует.

В СМО с ожиданием заявка, которая поступает в момент, когда все каналы заняты, не оставляет систему, а становится в очередь на обслуживание.

Процесс работы СМО представляет собой случайный процесс.

Процесс называется процессом с дискретными состояниями, если его возможные состояния Уравнения колмогорова пример решения задачиможно заранее пересчитать, а переход системы от одного к другому происходит мгновенно (скачкообразно). Процесс называется процессом с непрерывным временем, если моменты возможных переходов системы из одного состояния в другое не фиксированы заранее, а случайные.

Процесс функционирования СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем.

Математический анализ работы СМО существенно упрощается, если процесс этой работы — марковский.

Понятие марковского процесса

Случайный процесс называется марковским, если для любого момента времени Уравнения колмогорова пример решения задачивероятностные характеристики процесса в будущем зависят только от его состояния в данный момент Уравнения колмогорова пример решения задачии не зависят от того, когда и как система приняла это состояние.

Пример. Система Уравнения колмогорова пример решения задачи— счетчик в такси. Состояние системы в момент Уравнения колмогорова пример решения задачихарактеризуется количеством километров, пройденных автомобилем до данного момента. Пусть в момент Уравнения колмогорова пример решения задачисчетчик показывает Уравнения колмогорова пример решения задачиВероятность того, что в момент Уравнения колмогорова пример решения задачисчетчик будет показывать то или иное количество километров Уравнения колмогорова пример решения задачизависит от Уравнения колмогорова пример решения задачино не зависит от того, в какие моменты времени изменялись показатели счетчика до момента Уравнения колмогорова пример решения задачи

Некоторые процессы можно приблизительно считать марковскими.

Пример. Система Уравнения колмогорова пример решения задачи— группа шахматистов. Состояние системы характеризуется количеством фигур противника, которые остались на доске до момента Уравнения колмогорова пример решения задачиВероятность того, что в момент Уравнения колмогорова пример решения задачиматериальное преимущество будет на стороне одного из противников, зависит, прежде всего от того, в каком состоянии находится система в данный момент Уравнения колмогорова пример решения задачиа не от того, когда и в какой последовательности исчезали фигуры с доски до момента Уравнения колмогорова пример решения задачи

Анализируя случайный процессы с дискретными состояниями, удобно пользоваться геометрической схемой — так называемым графом состояний Обычно состояния системы изображают прямоугольниками (кругами), а возможные переходы от одного состояния к другому — стрелками, которые соединяют состояния.

Пример. Построить граф состояний такого случайного процесса: прибор Уравнения колмогорова пример решения задачисостоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего немедленно начинается ремонт узла, который длится в течение заранее неизвестного случайного времени.

Решение. Возможные состояния системы: Уравнения колмогорова пример решения задачи— оба узла исправны; Уравнения колмогорова пример решения задачи— первый узел ремонтируется, а второй исправный; Уравнения колмогорова пример решения задачивторой узел ремонтируется, а первый исправный; Уравнения колмогорова пример решения задачи— оба узла ремонтируются.

Граф системы приведен на рис. 4.2.

Уравнения колмогорова пример решения задачи

Стрелка, направленная из Уравнения колмогорова пример решения задачидо Уравнения колмогорова пример решения задачиозначает переход системы в момент отказа первого узла; стрелка из Уравнения колмогорова пример решения задачидо Уравнения колмогорова пример решения задачи— переход в момент окончания ремонта этого узла. Стрелки из Уравнения колмогорова пример решения задачидо Уравнения колмогорова пример решения задачинет, поскольку допускается, что узлы выходят из строя независимо друг от друга.

Для математического описания марковского случайного процесса с дискретными состояниями и непрерывным временем, которое происходит в СМО, рассмотрим одно из важных понятий теории вероятностей — понятие потока событий.

Простейший поток событий

Потоком событий называется последовательность событий, которые происходят один за другим в случайный момент времени Например, поток заявок, поступающий на предприятие бытового обслуживания, поток вызовов на телефонной станции, поток отказов (сбоев) во время работы на ЭВМ и т.д. Среднее количество событий, которые происходят за единицу времени, называется интенсивностью потока.

Поток называется простейшим, если он имеет такие свойства:

1) стационарность — вероятность того, что за некоторый промежуток времени Уравнения колмогорова пример решения задачипроизойдет то или иное количество событий, зависит только от длины промежутка и не зависит от начала его отсчета, то есть интенсивность потока постоянная;

2) отсутствие последействия — вероятность наступления некоторого количества событий в произвольном промежутке времени не зависит от того, какое количество событий произошло до начала этого промежутка;

3) ординарность — вероятность наступления двух и более событий за малый промежуток времени Уравнения колмогорова пример решения задачисущественно меньше, чем вероятность того, что произойдет одно событие.

Если поток событий простейший, то вероятность того, что за промежуток времени Уравнения колмогорова пример решения задачисобытие Уравнения колмогорова пример решения задачинаступит Уравнения колмогорова пример решения задачираз, определяется формулой: Уравнения колмогорова пример решения задачигде Уравнения колмогорова пример решения задачи— интенсивность потока. Эта формула отражает все свойства простейшего потока, а следовательно, является его математической моделью.

Пример. Среднее количество заявок, поступающих на комбинат бытового обслуживания за 1 час равно 4. Найти вероятность того, что за 3 часа поступит: 1) 6 заявок; 2) менее 6 заявок; 3) не менее 6 заявок.

Решение. Пусть событие Уравнения колмогорова пример решения задачи— «поступление одной заявки». Поток заявок простейший. Поэтому для решения задачи используем приведенную только что формулу, в которой Уравнения колмогорова пример решения задачи Уравнения колмогорова пример решения задачиВычислим соответствующие вероятности:

Уравнения колмогорова пример решения задачи

Уравнения Колмогорова. Предельные вероятности состояний

Вероятностью Уравнения колмогорова пример решения задачисостояния называется вероятность Уравнения колмогорова пример решения задачитого, что в момент Уравнения колмогорова пример решения задачисистема будет находиться в состоянии Уравнения колмогорова пример решения задачи

Очевидно, что для любого момента Уравнения колмогорова пример решения задачисумма вероятностей состояний равна 1:

Уравнения колмогорова пример решения задачи

Правило построений уравнений Колмогорова. В левой части каждого из уравнений должна быть производная вероятности Уравнения колмогорова пример решения задачисостояния. В правой части = сумма произведений вероятностей всех состояний (из которых происходим переход в данное состояние) на интенсивности соответствующих потоков событий минус суммарная интенсивность всех потоков, которые выводят систему из данного Уравнения колмогорова пример решения задачисостояния, умноженная на вероятность этого состояния.

Например, для системы Уравнения колмогорова пример решения задачикоторая имеет четыре состояния Уравнения колмогорова пример решения задачиУравнения колмогорова пример решения задачисистема дифференцированных уравнений Колмогорова для вероятностей состояний принимает такой вид:

Уравнения колмогорова пример решения задачи

В системе (2) независимых уравнений на одно меньше от общего количества уравнений. Поэтому для решения системы необходимо прибавит уравнений (1) при Уравнения колмогорова пример решения задачи

Особенность решения дифференциальных уравнений вообще состоит в том, что нужно задавать так называемые начальные условия, в данном случае — вероятности состояний системы в начальный момент Уравнения колмогорова пример решения задачиТак, систему (2) должны решать при условии, что в начальный момент оба узла исправны и система находилась в состоянии Уравнения колмогорова пример решения задачито есть при начальных условиях Уравнения колмогорова пример решения задачи

Уравнения Колмогорова дают возможность находить все вероятности состояний как функции времени. Особый интерес представляет вероятности системы Уравнения колмогорова пример решения задачив предельном стационарном режиме, то есть при Уравнения колмогорова пример решения задачикоторые называются предельными вероятностями состояний.

В теории случайных процессов доказано, что количество состояний системы конечное и из каждого из них можно перейти к любому другому состоянию, то предельные вероятности существуют.

Предельная вероятность состояния Уравнения колмогорова пример решения задачиимеет такое содержание: она показывает среднюю относительную продолжительность пребывания системы в этом состоянии. Например, если предельная вероятность состояния Уравнения колмогорова пример решения задачисоставляет Уравнения колмогорова пример решения задачито это означает, что в среднем половину времен системы находится в состоянии Уравнения колмогорова пример решения задачи

Пример 1. Найти предельные вероятности для системы Уравнения колмогорова пример решения задачииз последнего примера, граф состояний которой приведен на рис. 4.2. При Уравнения колмогорова пример решения задачиУравнения колмогорова пример решения задачи

Решение. Система алгебраических уравнений, которая описывает стационарный режим для данной системы, принадлежит к виду (1):

Уравнения колмогорова пример решения задачи

Решая эту систему уравнений, получаем Уравнения колмогорова пример решения задачиУравнения колмогорова пример решения задачиСледовательно, в предельном стационарном режиме система Уравнения колмогорова пример решения задачив среднем 40% времени находится в состоянии Уравнения колмогорова пример решения задачи20% — в состоянии Уравнения колмогорова пример решения задачи27% — в состоянии Уравнения колмогорова пример решения задачи13% — в состоянии Уравнения колмогорова пример решения задачи

Пример 2. Найти прибыль от эксплуатации в стационаром режиме системы Уравнения колмогорова пример решения задачикогда известно, что за единицу времени исправная работа первого и второго узлов приносит доход, который составляет соответственно 10 и 6 ус. ед., а их ремонт требует расходов, которые составляют соответственно 4 и 2 ус. ед.

Оценить экономическую эффективность уменьшения вдвое средней продолжительности ремонта каждого из этих узлов, если в этом случае придется вдвое увеличить расходы на ремонт.

Решение. Из примера 1 следует, что в среднем первый узел исправен в течение части времени, которая составляет Уравнения колмогорова пример решения задачи Уравнения колмогорова пример решения задачиа второй узел — в течение части Уравнения колмогорова пример решения задачи Уравнения колмогорова пример решения задачиВ этом случае первый узел находится в ремонте в среднем часть времени, равной Уравнения колмогорова пример решения задачиа второй — Уравнения колмогорова пример решения задачиПоэтому средняя прибыль за единицу времени от эксплуатации системы (разница между доходом и расходами) будет такой:

Прибыль = Уравнения колмогорова пример решения задачи(ус. ед.).

Уменьшение вдвое среднего времени ремонта каждого из узлов согласно с Уравнения колмогорова пример решения задачибудет означать увеличение вдвое интенсивности потока «окончания ремонта» каждого узла. Следовательно, в этом случае Уравнения колмогорова пример решения задачии система линейных алгебраических уравнений (1) принимает вид:

Уравнения колмогорова пример решения задачи

Решая эту системы, получаем Уравнения колмогорова пример решения задачиУравнения колмогорова пример решения задачи

Поскольку Уравнения колмогорова пример решения задачиУравнения колмогорова пример решения задачито расходы на ремонт первого и второго узла будут составлять соответственно 8 и 4 ус. ед. Отсюда получим среднюю прибыль за единицу времени:

(Прибыль)Уравнения колмогорова пример решения задачи Уравнения колмогорова пример решения задачи(ус. ед.)

(Прибыль) Уравнения колмогорова пример решения задачибольше, чем Прибыль (приблизительно — на 2%), поэтому экономическая целесообразность сокращения срока ремонта узлов очевидна.

Лекции:

Присылайте задания в любое время дня и ночи в ➔ Уравнения колмогорова пример решения задачиУравнения колмогорова пример решения задачи

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:уравнение колмагороваСкачать

уравнение колмагорова

Уравнения Колмогорова.
Предельные вероятности состояний

Рассмотрим математическое описание марковского процесса с дискретными состояниями и непрерывным временем* на примере случайного процесса из примера 1, граф которого изображен на рис. 1. Будем полагать, что все переходы системы из состояния в происходят под воздействием простейших потоков событий с интенсивностями ; так, переход системы из состояния в будет происходить под воздействием потока отказов первого узла, а обратный переход из состояния в — под воздействием потока «окончаний ремонтов» первого узла и т.п.

Граф состояний системы с проставленными у стрелок интенсивностями будем называть размеченным (см. рис. 1). Рассматриваемая система имеет четыре возможных состояния: .

Вероятностью i-го состояния называется вероятность того, что в момент система будет находиться в состоянии . Очевидно, что для любого момента сумма вероятностей всех состояний равна единице:

Рассмотрим систему в момент и, задав малый промежуток , найдем вероятность того, что система в момент будет находиться в состоянии . Это достигается разными способами.

1. Система в момент с вероятностью находилась в состоянии , а за время не вышла из него.

Вывести систему из этого состояния (см. граф на рис. 1) можно суммарным простейшим потоком с интенсивностью , т.е. в соответствии с формулой (7), с вероятностью, приближенно равной . А вероятность того, что система не выйдет из состояния , равна . Вероятность того, что система будет находиться в состоянии по первому способу (т.е. того, что находилась в состоянии и не выйдет из него за время ), равна по теореме умножения вероятностей:

2. Система в момент с вероятностями (или ) находилась в состоянии или и за время перешла в состояние .

Потоком интенсивностью (или — с- рис. 1) система перейдет в состояние с вероятностью, приближенно равной (или ). Вероятность того, что система будет находиться в состоянии по этому способу, равна (или ).

Применяя теорему сложения вероятностей, получим

Переходя к пределу при (приближенные равенства, связанные с применением формулы (7), перейдут в точные), получим в левой части уравнения производную (обозначим ее для простоты ):

Получили дифференциальное уравнение первого порядка, т.е. уравнение, содержащее как саму неизвестную функцию, так и ее производную первого порядка.

Рассуждая аналогично для других состояний системы , можно получить систему дифференциальных уравнений Колмогорова для вероятностей состояний:

Сформулируем правило составления уравнений Колмогорова . В левой части каждого из них стоит производная вероятности i-го состояния. В правой части — сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние) на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (i-го состояния).

В системе (9) независимых уравнений на единицу меньше общего числа уравнений. Поэтому для решения системы необходимо добавить уравнение (8).

Особенность решения дифференциальных уравнений вообще состоит в том, что требуется задать так называемые начальные условия, т.е. в данном случае вероятности состояний системы в начальный момент . Так, например, систему уравнений (9) естественно решать при условии, что в начальный момент оба узла исправны и система находилась в состоянии , т.е. при начальных условиях .

Уравнения Колмогорова дают возможность найти все вероятности состояний как функции времени . Особый интерес представляют вероятности системы в предельном стационарном режиме , т.е. при , которые называются предельными (или финальными) вероятностями состояний.

В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют.

Предельная вероятность состояния имеет четкий смысл: она показывает среднее относительное время пребывания системы в этом состоянии . Например, если предельная вероятность состояния , т.е. , то это означает, что в среднем половину времени система находится в состоянии .

Так как предельные вероятности постоянны, то, заменяя в уравнениях Колмогорова их производные нулевыми значениями, получим систему линейных алгебраических уравнений, описывающих стационарный режим. Для системы с графом состояний, изображенном на рис. 1), такая система уравнений имеет вид:

Систему (10) можно составить непосредственно по размеченному графу состояний, если руководствоваться правилом , согласно которому слева в уравнениях стоит предельная вероятность данного состояния , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа — сумма произведений интенсивностей всех потоков, входящих в i-е состояние, на вероятности тех состояний, из которых эти потоки исходят.

Пример 2. Найти предельные вероятности для системы из примера 1, граф состояний которой приведен на рис. 1, при

Решение. Система алгебраических уравнений, описывающих стационарный режим для данной системы, имеет вид (10) или

(Здесь мы вместо одного «лишнего» уравнения системы (10) записали нормировочное условие (8)).

Решив систему (11), получим , т.е. в предельном, стационарном режиме система в среднем 40% времени будет находиться в состоянии (оба узла исправны), 20% — в состоянии (первый узел ремонтируется, второй работает), 27% — в состоянии (второй узел ремонтируется, первый работает) и 13% времени — в состоянии (оба узла ремонтируются)

Пример 3. Найти средний чистый доход от эксплуатации в стационарном режиме системы в условиях примеров 1 и 2, если известно, что в единицу времени исправная работа первого и второго узлов приносит доход соответственно в 10 и 6 ден.ед., а их ремонт требует затрат соответственно в 4 и 2 ден.ед. Оценить экономическую эффективность имеющейся возможности уменьшения вдвое среднего времени ремонта каждого из двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в единицу времени).

Решение. Из примера 2 следует, что в среднем первый узел исправно работает долю времени, равную , а второй узел — . В то же время первый узел находится в ремонте в среднем долю времени, равную , а второй узел — . Поэтому средний чистый доход в единицу времени от эксплуатации системы, т.е. разность между доходами и затратами, равен

Уменьшение вдвое среднего времени ремонта каждого из узлов в соответствии с (6) будет означать увеличение вдвое интенсивностей потока «окончаний ремонтов» каждого узла, т.е. теперь и система линейных алгебраических уравнений (10), описывающая стационарный режим системы , вместе с нормировочным условием (8) примет вид:

Решив систему, получим .

Учитывая, что , а затраты на ремонт первого и второго узла составляют теперь соответственно 8 и 4 ден.ед., вычислим средний чистый доход в единицу времени:

Так как больше (примерно на 20%), то экономическая целесообразность ускорения ремонтов узлов очевидна.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Процесс гибели и размножения

В теории массового обслуживания широкое распространение имеет специальный класс случайных процессов — так называемый процесс гибели и размножения . Название этого процесса связано с рядом биологических задач, где он является математической моделью изменения численности биологических популяций.

Граф состояний процесса гибели и размножения имеет вид, показанный на рис. 4.

Рассмотрим упорядоченное множество состояний системы . Переходы могут осуществляться из любого состояния только в состояния с соседними номерами, т.е. из состояния возможны переходы только либо в состояние , либо в состояние .

Предположим, что все потоки событий, переводящие систему по стрелкам графа, простейшие с соответствующими интенсивностями или .

По графу, представленному на рис. 4, составим и решим алгебраические уравнения для предельных вероятностей состояний (их существование вытекает из возможности перехода из каждого состояния в каждое другое и конечности числа состояний).

В соответствии с правилом составления таких уравнений (см. 13) получим: для состояния

для состояния имеем , которое с учетом (12) приводится к виду

Аналогично, записывая уравнения для предельных вероятностей других состояний, можно получить следующую систему уравнений:

к которой добавляется нормировочное условие

При анализе численности популяций считают, что состояние соответствует численности популяции, равной , и переход системы из состояния в состояние происходит при рождении одного члена популяции, а переход в состояние — при гибели одного члена популяции.

Решая систему (14), (15), можно получить

Легко заметить, что в формулах (17) для коэффициенты при есть слагаемые, стоящие после единицы в формуле (16). Числители этих коэффициентов представляют произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо до данного состояния , а знаменатели — произведение всех интенсивностей, стоящих у стрелок, ведущих справа налево до состояния .

Пример 4. Процесс гибели и размножения представлен графом (рис. 5). Найти предельные вероятности состояний.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Марковские случайные процессы. Уравнения Колмогорова для вероятностей состояний.

Наиболее полное исследование процесса функционирования систем получается, если известны явные математические зависимости, связывающие искомые показатели с начальными условиями, параметрами и переменными исследуемой системы. Для многих современных систем, являющихся объектами моделирования, такие математические зависимости отсутствуют или малопригодны, и следует применять другое моделирование, как правило, имитационное.

Большой класс случайных процессов составляют процессы без последействия, которые в математике называют марковскими процессами в честь Андрея Андреевича Маркова — старшего (1856 — 1922), выдающегося русского математика, разработавшего основы теории таких процессов.

Случайный процесс называется марковским, если вероятность перехода системы в новое состояние зависит только от состояния системы в настоящий момент и не зависит от того, когда и каким образом система перешла в это состояние.

Практически любой случайный процесс является марковским или может быть сведен к марковскому. В последнем случае достаточно в понятие состояния включить всю предысторию смен состояний системы.

Марковские процессы делятся на два класса:

· дискретные марковские процессы (марковские цепи);

· непрерывные марковские процессы.

Дискретной марковской цепьюназывается случайный процесс, при котором смена дискретных состояний происходит в определенные моменты времени.

Непрерывным марковским процессомназывается случайный процесс, при котором смена дискретных состояний происходит в случайные моменты времени.

Рассмотрим ситуацию, когда моделируемый процесс обладает следующими особенностями.

Система Уравнения колмогорова пример решения задачиимеет Уравнения колмогорова пример решения задачивозможных состояний: Уравнения колмогорова пример решения задачи, Уравнения колмогорова пример решения задачи. Уравнения колмогорова пример решения задачи. Вообще говоря, число состояний может быть бесконечным. Однако модель, как правило, строится для конечного числа состояний.

Смена состояний происходит, будем считать, мгновенно и в строго определенные моменты времени Уравнения колмогорова пример решения задачи. В дальнейшем будем называть временные точки Уравнения колмогорова пример решения задачишагами.

Известны вероятности перехода Уравнения колмогорова пример решения задачисистемы за один шаг из состояния Уравнения колмогорова пример решения задачив состояние Уравнения колмогорова пример решения задачи.

Цель моделирования: определить вероятности состояний системы после Уравнения колмогорова пример решения задачи-го шага.

Обозначим эти вероятности Уравнения колмогорова пример решения задачи(не путать с вероятностями Уравнения колмогорова пример решения задачи).

Если в системе отсутствует последействие, то есть вероятности Уравнения колмогорова пример решения задачине зависят от предыстории нахождения системы в состоянии Уравнения колмогорова пример решения задачи, а определяются только этим состоянием, то описанная ситуация соответствует модели дискретной марковской цепи.

Марковская цепь называется однородной, если переходные вероятности Уравнения колмогорова пример решения задачиот времени не зависят, то есть от шага к шагу не меняются. В противном случае, то есть если переходные вероятности Уравнения колмогорова пример решения задачизависят от времени, марковская цепь называется неоднородной.

Значения Уравнения колмогорова пример решения задачиобычно сводятся в матрицу переходных вероятностей:

Уравнения колмогорова пример решения задачи

Значения Уравнения колмогорова пример решения задачимогут также указываться на графе состояний системы. На рис. показан размеченный граф для четырех состояний системы. Обычно вероятности переходов «в себя» — Уравнения колмогорова пример решения задачи, Уравнения колмогорова пример решения задачии т. д. на графе состояний можно не проставлять, так как их значения дополняют до 1 сумму переходных вероятностей, указанных на ребрах (стрелках), выходящих из данного состояния.

Не указываются также нулевые вероятности переходов. Например, на рис. это вероятности Уравнения колмогорова пример решения задачи, Уравнения колмогорова пример решения задачии др.

Математической моделью нахождения вероятностей состояний однородной марковской цепи является рекуррентная зависимость

Уравнения колмогорова пример решения задачи

где Уравнения колмогорова пример решения задачи— вероятность Уравнения колмогорова пример решения задачи-го состояния системы после Уравнения колмогорова пример решения задачи-го шага, Уравнения колмогорова пример решения задачи;

Уравнения колмогорова пример решения задачи— вероятность Уравнения колмогорова пример решения задачи-го состояния системы после Уравнения колмогорова пример решения задачи-го шага, Уравнения колмогорова пример решения задачи;

Уравнения колмогорова пример решения задачи— число состояний системы;

Уравнения колмогорова пример решения задачи-переходные вероятности.

Уравнения колмогорова пример решения задачи

Рис.Размеченный граф состояний системы

Для неоднородной марковской цепи вероятности состояний системы находятся по формуле:

Уравнения колмогорова пример решения задачи

где Уравнения колмогорова пример решения задачи— значения переходных вероятностей для Уравнения колмогорова пример решения задачи-го шага.

Сформулируем методику моделирования по схеме дискретных марковских процессов (марковских цепей).

1. Зафиксировать исследуемое свойство системы.

Определение свойства зависит от цели исследования. Например, если исследуется объект с целью получения характеристик надежности, то в качестве свойства следует выбрать исправность. Если исследуется загрузка системы, то — занятость. Если состояния объектов, то — поражен или непоражен.

2. Определить конечное число возможных состояний системы и убедиться в правомерности моделирования по схеме дискретных марковских процессов.

3. Составить и разметить граф состояний.

4. Определить начальное состояние.

5. По рекуррентной зависимости определить искомые вероятности.

В рамках изложенной методики моделирования исчерпывающей характеристикой поведения системы является совокупность вероятностей Уравнения колмогорова пример решения задачи.

При моделировании состояния систем с непрерывными марковскими процессами мы уже не можем воспользоваться переходными вероятностями Уравнения колмогорова пример решения задачи, так как вероятность «перескока» системы из одного состояния в другое точно в момент времени Уравнения колмогорова пример решения задачиравна нулю (как вероятность любого отдельного значения непрерывной случайной величины).

Поэтому вместо переходных вероятностей вводятся в рассмотрение плотности вероятностей переходов Уравнения колмогорова пример решения задачи:

Уравнения колмогорова пример решения задачи

где Уравнения колмогорова пример решения задачи— вероятность того, что система, находившаяся в момент времени Уравнения колмогорова пример решения задачив состоянии Уравнения колмогорова пример решения задачиза время Уравнения колмогорова пример решения задачиперейдет в состояние Уравнения колмогорова пример решения задачи.

С точностью до бесконечно малых второго порядка из приведенной формулы можно представить:

Уравнения колмогорова пример решения задачи

Непрерывный марковский процесс называется однородным,если плотности вероятностей переходов Уравнения колмогорова пример решения задачине зависят от времени Уравнения колмогорова пример решения задачи(от момента начала промежутка Уравнения колмогорова пример решения задачи). В противном случае непрерывный марковский процесс называется неоднородным.

Целью моделирования,как и в случае дискретных процессов, является определение вероятностей состояний системы Уравнения колмогорова пример решения задачиЭти вероятности находятся интегрированием системы дифференциальных уравнений Колмогорова.

Сформулируем методику моделирования по схеме непрерывных марковских процессов.

1. Определить состояния системы и плотности вероятностей переходов Уравнения колмогорова пример решения задачи.

2. Составить и разметить граф состояний.

3. Составить систему дифференциальных уравнений Колмогорова. Число уравнений в системе равно числу состояний. Каждое уравнение формируется следующим образом.

4. B левой части уравнения записывается производная вероятности Уравнения колмогорова пример решения задачи-го состоянии Уравнения колмогорова пример решения задачи

5. В правой части записывается алгебраическая сумма произведений Уравнения колмогорова пример решения задачии Уравнения колмогорова пример решения задачи. Число произведений столько, сколько стрелок связано с данным состоянием. Если стрелка графа направлена в данное состояние, то соответствующее произведение имеет знак плюс, если из данного состояния — минус.

6. Определить начальные условия и решить систему дифференциальных уравнений.

Пример. Составить систему дифференциальных уравнений Колмогорова для нахождения вероятностей состояний системы, размеченный граф состояний которой представлен на рисунке.

Уравнения колмогорова пример решения задачи

Рис. Размеченный граф состояний

Уравнения колмогорова пример решения задачи

Очевидно, Уравнения колмогорова пример решения задачи.

Поэтому любое из первых трех уравнений можно исключить, как линейно зависимое.

Для решения уравнений Колмогорова необходимо задать начальные условия. Для рассмотренного примера можно задать такие начальные условия: Уравнения колмогорова пример решения задачи, Уравнения колмогорова пример решения задачи.

Дата добавления: 2015-04-03 ; просмотров: 7855 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

📽️ Видео

Решение системы уравнений Колмогорова в МатлабеСкачать

Решение системы уравнений Колмогорова в Матлабе

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

Математика это не ИсламСкачать

Математика это не Ислам

Калькулятор не поможет ★ Жесть от Колмогорова ★ Что больше 2^3^100 или 3^2^150 ★ Сравните числаСкачать

Калькулятор не поможет ★ Жесть от Колмогорова ★ Что больше 2^3^100 или 3^2^150 ★ Сравните числа

День студента мехмата МГУ #мгу #умскул #физика #математика #учеба #подготовкаогэ #подготовкакегэСкачать

День студента мехмата МГУ #мгу #умскул #физика #математика #учеба #подготовкаогэ #подготовкакегэ

Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

О единственности вероятностных решений уравнений Фоккера-Планка-КолмогороваСкачать

О единственности вероятностных решений уравнений Фоккера-Планка-Колмогорова

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Уравнения Фоккера-Планка-Колмогорова (С.В. Шапошников)Скачать

Уравнения Фоккера-Планка-Колмогорова (С.В. Шапошников)

Математика без Ху!ни. Теория вероятностей. Схема БернуллиСкачать

Математика без Ху!ни. Теория вероятностей. Схема Бернулли
Поделиться или сохранить к себе: