«Неравенство с двумя модулями. Часть I» смотрим здесь.
Решим неравенство
Правило раскрытия модуля говорит, что раскрытие модуля зависит от того, какой знак имеет подмодульное выражение. Стало быть, нас будут интересовать нули подмодульных выражений, – смена знака подмодульного выражения возможна только в них.
В нашем случае нуль первого модуля – это 4, нули второго подмодульного выражения – это -3 и 2.
Вся числовая ось указанными точками разбивается на 4 промежутка. Нам предстоит поработать с неравенством в каждом из них.
Если у вас возник вопрос, почему, например, в крайнем левом промежутке у нас число -3 не включено, а на следующем включено (аналогично с другими), – ответим на него. На самом деле, – все равно, куда именно вы включите концы промежутков. Лишь бы при склейке все промежутки давали бы нам всю числовую прямую, если мы работаем на R.
Выясним, как распределяются знаки подмодульных выражений на каждом из промежутков.
Начнем с первого подмодульного выражения. Очевидно, что при 4″ title=»Rendered by QuickLaTeX.com» height=»15″ width=»48″ style=»vertical-align: -1px;»/> знак выражения – минус, то есть , а при .
«Переключателями» же знака второго подмодульного выражения из неравенства являются точки -3 и 2. Если , то при остальных имеем: 0″ title=»Rendered by QuickLaTeX.com» height=»20″ width=»127″ style=»vertical-align: -2px;»/>. Если вам не кажутся очевидными знаки этого подмодульного выражения на указанных промежутках, загляните сюда (метод интервалов).
Мы замечаем, что на двух промежутках (первом и третьем слева) знаки подмодульных выражений распределены одинаково.
Итак, первый случай:
Предстоит решить систему (мы объединили первый и третий промежутки в совокупность):
Во второй строке системы приводим подобные слагаемые и раскладываем на множители:
Теперь переходим на ось, пересекаем два множества между собой:
.
Второй случай:
.
Третий случай:
4,& & -4+x+x^2+x-6geq 7; end» title=»Rendered by QuickLaTeX.com» height=»60″ width=»231″ style=»vertical-align: -25px;»/>
4,& & x^2+2x-17geq 0; end» title=»Rendered by QuickLaTeX.com» height=»60″ width=»165″ style=»vertical-align: -25px;»/>
4,& & (x-(-1+3sqrt2))(x-(-1-3sqrt2))geq 0; end» title=»Rendered by QuickLaTeX.com» height=»60″ width=»362″ style=»vertical-align: -25px;»/>
.
Нам осталось объединить решения каждого из случаев между собой:
Ответ:
Для тренировки предлагаю Вам решить следующее неравенство:
Видео:Неравенства с модулем | Математика | TutorOnlineСкачать
Метод интервалов для решения уравнений и неравенств с несколькими модулями
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Метод интервалов для решения уравнений и неравенств с несколькими модулями»
Определение модуля. Решение по определению.
Модуль числа всегда неотрицателен. Рассмотрим примеры.
Здесь разбор случаев устраивать не нужно, потому что абсолютная величина числа всегда неотрицательна, и значит, данное уравнение не имеет решений.
Запишем решение этих простейших уравнений в общем виде:
Пример 2. Решить уравнение |x| = 2 – x.
Решение. При x >0 имеем уравнение x = 2 – x, т.е. x = 1. Поскольку 1 > 0, x = 1 – корень исходного уравнения. Во втором случае (x
Пример 3. Решить уравнение 3|x – 3| + x = –1.
Решение. Здесь разбиение на случаи определяется знаком выражения x – 3. При x – 3 ³ 0 имеем 3x – 9 + x = –1 Û x = 2. Но 2 – 3 0.
Ответ: уравнение корней не имеет.
Пример 4. Решить уравнение |x – 1| = 1 – x.
Решение. Поскольку 1 – x = – (x – 1), непосредственно из определения модуля следует, что уравнению удовлетворяют те и только те x, для которых x – 1 >0. Это уравнение свелось к неравенству, и ответом является целый промежуток (луч).
Решение уравнений с модулем с помощью систем.
1-е правило: |f(x)| = g(x) Û (1)
2-е правило: |f(x)| = g(x) Û (2)
Поясним используемые здесь обозначения. Фигурные скобки обозначают системы, а квадратные – совокупности.
Решения системы уравнений – это значения переменной, одновременно удовлетворяющие всем уравнениям системы.
Решениями совокупности уравнений являются все значения переменной, каждое из которых есть корень хотя бы одного из уравнений совокупности.
Два уравнения равносильны, если любое решение каждого из них является и решением другого, иначе говоря, если множества их решений совпадают.
Если уравнение содержит несколько модулей, то от них можно избавляться по очереди, пользуясь приведенными правилами. Но обычно есть более короткие пути. Мы познакомимся с ними позже, а сейчас рассмотрим решение самого простого из таких уравнений:
|f(x)| = |g(x)| Û
Эта равносильность следует из того очевидного факта, что если равны модули двух чисел, то сами числа либо равны, либо противоположны.
Пример 1 . Решить уравнение |x 2 – 7x + 11| = x + 1.
Решение. Избавимся от модуля двумя описанными выше способами:
1 способ: 2 способ:
Как видим, в обоих случаях приходится решать те же самые два квадратных уравнения , но в первом случае их сопровождают квадратные неравенства , а во втором – линейное. Поэтому второй способ для данного уравнения проще. Решая квадратные уравнения, находим корни первого , оба корня удовлетворяют неравенству . Дискриминант второго уравнения отрицателен, следовательно, уравнение корней не имеет.
Ответ: .
Пример 2. Решить уравнение |x 2 – x – 6| = |2x 2 + x – 1|.
Решение. Мы уже знаем, что рассматривать (целых 4) варианта распределения знаков выражений под модулями здесь не нужно: это уравнение равносильно совокупности двух квадратных уравнений без каких-либо дополнительных неравенств: Которая равносильна: Первое уравнение совокупности решений не имеет (его дискриминант отрицателен), второе уравнение имеет два корня .
Ответ: .
Задачи с несколькими модулями. Методы решения.
Последовательное раскрытие модулей.
Его идея в том, что сначала один из модулей изолируется в одной части уравнения (или неравенства) и раскрывается одним из описанных ранее методов. Затем то же самое повторяется с каждым из получившихся в результате уравнений с модулями и так продолжается, пока мы не избавимся ото всех модулей.
Пример1. Решить уравнение: +
Решение. Уединим второй модуль и раскроем его, пользуясь первым способом, то есть просто определением абсолютной величины:
К полученным двум уравнениям применяем второй способ освобождения от модуля:
Наконец, решаем получившиеся четыре линейных уравнения и отбираем те их корни, которые удовлетворяют соответствующим неравенствам. В результате остаются лишь два значения: x = –1 и .
Ответ: -1; .
Параллельное раскрытие модулей.
Пример 2 . +
Решение.
Рассмотрим 4 возможных набора знаков выражений под модулями.
Лишь первый и третий из этих корней удовлетворяют соответствующим неравенствам, а значит, и исходному уравнению.
Ответ: -1; .
Аналогично можно решать любые задачи с несколькими модулями. Но, как всякий универсальный метод, этот способ решения далеко не всегда оптимален. Ниже мы увидим, как его можно усовершенствовать.
Метод интервалов в задачах с модулями
Присмотревшись внимательнее к условиям, задающим разные варианты распределения знаков подмодульных выражений в предыдущем решении, мы увидим, что одно их них, 1 – 3x
Представьте, что мы решаем уравнение, в которое входят три модуля от линейных выражений; например, |x – a| + |x – b| + |x – c| = m.
Первый модуль равен x – a при x ³ a и a – x при x b и x
Они образуют четыре промежутка. На каждом из них каждое из выражений под модулями сохраняет знак, следовательно, и уравнение в целом после раскрытия модулей имеет на каждом промежутке один и тот же вид. Итак, из 8 теоретически возможных вариантов раскрытия модулей нам оказалось достаточно только 4!
Так же можно решать любую задачу с несколькими модулями. Именно, числовая ось разбивается на промежутки знакопостоянства всех выражений, стоящих под модулями, а затем на каждом из них решается то уравнение или неравенство, в которое превращается данная задача на этом промежутке. В частности, если все выражения под модулями рациональны , то достаточно отметить на оси их корни, а также точки, где они не определены, то есть корни их знаменателей. Отмеченные точки и задают искомые промежутки знакопостоянства. Точно так же мы действуем при решении рациональных неравенств методом интервалов. И описанный нами метод решения задач с модулями имеет то же название.
Пример 1 . Решите уравнение .
Решение. Найдем нули функции , откуда . Решаем задачу на каждом интервале:
1) ;
2) ;
3) .
Итак, данное уравнение не имеет решений.
Ответ: .
Пример 2 . Решите уравнение .
Решение. Найдем нули функции . Решаем задачу на каждом интервале:
1) (решений нет);
2) ;
3) .
Ответ: .
Пример 3 . Решите уравнение .
Решение. Выражения, стоящие под знаком абсолютной величины обращаются в ноль при . Соответственно нам нужно рассмотреть три случая:
1) ;
2) — корень уравнения;
3) — корень данного уравнения.
Ответ: .
Решения уравнений с несколькими модулями, используя метод интервалов.
Х+2
— 2 1 Х Х-1
х=2 – не удовлетворяет
Решите уравнение:
Решение:
1) Находим нули подмодульных выражений
Нули подмодульных выражений разбивают числовую ось на несколько интервалов. Расставляем знаки подмодульных выражений на этих интервалах.
На каждом интервале раскрываем модули и решаем полученное уравнение. После нахождения корня проверяем, чтобы он принадлежал интервалу, на котором мы в данный момент работаем.
1. :
– подходит.
2. :
– не подходит.
3. :
– подходит.
4. :
– не подходит. Ответ:
Решения неравенств с несколькими модулями, используя метод интервалов.
Решение. Точки и (корни выражений, стоящих под модулем) разбивают всю числовую ось на три интервала, на каждом из которых следует раскрыть модули.
1) При выполняется 0 endright.»>, и неравенство имеет вид , то есть . В этом случае ответ .
2) При выполняется , неравенство имеет вид , то есть . Это неравенство верно при любых значениях переменной , и, с учетом того, что мы решаем его на множестве , получаем ответ во втором случае .
3) При выполняется , неравенство преобразуется к , и решение в этом случае . Общее решение неравенства — объединение трех полученных ответов.
Ответ. .
Таким образом, для решения уравнений и неравенств, содержащих несколько модулей, удобно использовать метод интервалов. Для этого надо найти нули вех подмодульных функций, обозначить их на ОДЗ уравнения и неравенств.
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Уравнения с модулем
Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.
Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.
Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.
Прежде всего вспомним, что
Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)
Видео:Как решать неравенства с модулем. Два модуля в неравенстве.Скачать
Слева модуль, справа число
Это самый простой случай. Решим уравнение
Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:
Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.
Видео:11 класс, 29 урок, Уравнения и неравенства с модулямиСкачать
Переменная как под модулем, так и вне модуля
Здесь приходится раскрывать модуль по определению. . . или соображать!
Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:
Решение первой системы: . У второй системы решений нет.
Ответ: 1.
Первый случай: x ≥ 3. Снимаем модуль:
Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.
Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:
Значит, больше трёх и потому является корнем исходного уравнения
Стало быть, годятся лишь и .
Ответ:
Видео:Уравнение с двумя модулями: особенности решенияСкачать
Квадратные уравнения с заменой |x| = t
Поскольку , удобно сделать замену |x| = t. Получаем:
Видео:Неравенство с двумя модулями. Задание 14 ЕГЭ по профильной математикеСкачать
Модуль равен модулю
Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:
Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:
Остаётся решить каждое из уравнений совокупности и записать ответ.
Видео:Решение неравенства с несколькими модулямиСкачать
Два или несколько модулей
Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.
Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)
Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.
Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:
Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.
Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:
Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.
Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:
Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.
Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:
Ничего нового. Мы и так знаем, что x = 1 является решением.
Видео:НЕРАВЕНСТВА С МОДУЛЕМСкачать
Модуль в модуле
Начинаем с раскрытия внутреннего модуля.
1) x ≤ 3. Получаем:
Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.
1.1) Получаем в этом случае:
Это значение x не годится, так как не принадлежит рассматриваемому промежутку.
1.2) . Тогда:
Это значение x также не годится.
Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.
Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:
Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.
Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.
Читайте также о том, как решать неравенства с модулем.
📹 Видео
Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать
Неравенства с модулем Часть 1 из 2 Простейшие неравенстваСкачать
9 класс, 5 урок, Неравенства с модулямиСкачать
Уравнения с модулемСкачать
Решение неравенства с несколькими модулями Уравнение с двумя модулями особенности решенияСкачать
Уравнение с модулемСкачать
Модуль в математике. Уравнения и неравенства | Математика ЕГЭ | УмскулСкачать
Контрольная работа. Уравнения с МОДУЛЕМСкачать
МОДУЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Неравенство с несколькими модулямиСкачать
6 класс, 24 урок, Модульные уравнения и неравенства с одной переменнойСкачать
Уравнение с тремя модулямиСкачать