Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.
Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.
Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.
Прежде всего вспомним, что
Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)
- Слева модуль, справа число
- Переменная как под модулем, так и вне модуля
- Квадратные уравнения с заменой |x| = t
- Модуль равен модулю
- Два или несколько модулей
- Модуль в модуле
- Уравнения и неравенства с модулями
- СОДЕРЖАНИЕ
- Демонстрационные варианты ЕГЭ и ОГЭ
- Электронный справочник по математике для школьников
- Основные сведения о способах решения неравенств с модулем
- Определение модуля
- Виды неравенств с модулем
- Способы решения неравенств с модулем, пояснения на примерах
- Примеры решения задач
- 💥 Видео
Видео:Модуль в математике. Уравнения и неравенства | Математика ЕГЭ | УмскулСкачать
Слева модуль, справа число
Это самый простой случай. Решим уравнение
Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:
Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Переменная как под модулем, так и вне модуля
Здесь приходится раскрывать модуль по определению. . . или соображать!
Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:
Решение первой системы: . У второй системы решений нет.
Ответ: 1.
Первый случай: x ≥ 3. Снимаем модуль:
Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.
Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:
Значит, больше трёх и потому является корнем исходного уравнения
Стало быть, годятся лишь и .
Ответ:
Видео:Неравенства с модулем | Математика | TutorOnlineСкачать
Квадратные уравнения с заменой |x| = t
Поскольку , удобно сделать замену |x| = t. Получаем:
Видео:№14 с модулем за 3 минуты. ЕГЭ 2022 по профильной математикеСкачать
Модуль равен модулю
Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:
Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:
Остаётся решить каждое из уравнений совокупности и записать ответ.
Видео:Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |Скачать
Два или несколько модулей
Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.
Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)
Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.
Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:
Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.
Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:
Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.
Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:
Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.
Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:
Ничего нового. Мы и так знаем, что x = 1 является решением.
Видео:Как раскрыть модуль. Неравенство и график с модулем ЕГЭСкачать
Модуль в модуле
Начинаем с раскрытия внутреннего модуля.
1) x ≤ 3. Получаем:
Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.
1.1) Получаем в этом случае:
Это значение x не годится, так как не принадлежит рассматриваемому промежутку.
1.2) . Тогда:
Это значение x также не годится.
Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.
Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:
Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.
Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.
Читайте также о том, как решать неравенства с модулем.
Видео:Неравенство с двумя модулями. Задание 14 ЕГЭ по профильной математикеСкачать
Уравнения и неравенства с модулями
СОДЕРЖАНИЕ
- Модуль (абсолютная величина) числа
- Простейшие уравнения с модулями
- Уравнения, использующие свойство неотрицательности модуля
- Простейшие неравенства с модулями
- Неравенства с модулями, сводящиеся к квадратным неравенствам
- Уравнения с модулями, содержащие параметр
- Неравенства с модулями, содержащие параметр
- Задачи с модулями, связанные с расположением корней квадратного трехчлена в зависимости от параметра
ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ
Скачать пособие «Уравнения и неравенства с модулями» (формат pdf, 210кб) |
С понятием модуля действительного числа можно ознакомиться в разделе «Абсолютная величина (модуль) действительного числа» нашего справочника.
С понятием квадратного трехчлена, решением квадратных уравнений, разложением квадратного трехчлена на множители можно ознакомиться в разделе «Квадратные уравнения» нашего справочника, а также в нашем учебно-методическом пособии для школьников по математике «Квадратный трехчлен».
Графики парабол и решение квадратных неравенств представлены в разделе «Парабола на координатной плоскости. Решение квадратных неравенств» нашего справочника.
Демонстрационные варианты ЕГЭ и ОГЭ
С демонстрационными вариантами ЕГЭ и ОГЭ по всем предметам, опубликованными на официальном информационном портале Единого Государственного Экзамена, можно ознакомиться на специальной страничке нашего сайта.
Электронный справочник по математике для школьников
При подготовке к ЕГЭ и ОГЭ по математике большую помощь может оказать наш электронный справочник по математике для школьников.
В справочник включены все разделы школьной программы, а также множество сведений для углубленного изучения курса математики.
Каждый раздел нашего справочника содержит не только теоретические сведения, но и решения типовых примеров и задач.
Видео:НЕРАВЕНСТВА С МОДУЛЕМСкачать
Основные сведения о способах решения неравенств с модулем
Видео:Метод рационализации. Неравенства с модулямиСкачать
Определение модуля
Модуль, или абсолютная величина, числа х в алгебре является самим числом «х» при x ≥ 0 и числом «–х» при x | x | = x , x ≥ 0 — x , x 0
Модуль числа обладает следующими свойствами:
- Модуль числа является неотрицательным числом: x ≥ 0 , x = 0 ⇔ x = 0 .
- Противоположные числа обладают равными модулями: — x = x .
- Модуль произведения из пары или более чисел равен произведению модулей этих чисел: x · y = x · y .
- Модуль частного пары чисел равен частному модулей этих чисел: x y = x y , где у отличен от нуля.
- Модуль суммы чисел в любом случае меньше по сравнению с суммой их модулей, либо равен сумме модулей данных чисел: x + y ≤ x + y .
- Неизменяемый множитель, который больше нуля, допускается выносить за знак модуля: c x = c · x при c>0.
- Квадрат модуля числа равен квадрату данного числа: x 2 = x 2 .
Видео:МодульСкачать
Виды неравенств с модулем
Неравенствами называют выражения, включающие в себя числа, либо выражения с переменной и записанные в виде:
a > b , a b , a ≤ b и a ≥ b .
Числовым называют такое неравенство, в котором a и b являются числами или числовыми выражениями.
Числовое неравенство представляет собой сравнение пары чисел. Смысл такой записи заключается в определении, какое из чисел больше или меньше по сравнению со вторым.
Виды числовых неравенств:
Неравенство -5 17 + 3 ≥ 115 является неверным. Правая часть неравенства равна 20:
Число 20 меньше по сравнению с числом 115. Этот вывод противоречит записанному неравенству, что позволяет назвать его неверным.
Неравенством с переменной называют такое неравенство, которое содержит переменную.
При решении задач можно столкнуться с разными видами неравенств с переменными:
- Линейное, с переменной в первой степени, например: 2 x + 1 ≥ 4 ( 5 — x ) .
- Квадратное, с переменной, возведенной в квадрат, например: 3 x 2 — x + 5 > 0 .
- Логарифмическое, где переменная записана под знаком логарифма, например: log 4 ( x + 1 ) 3 .
- Показательное, переменная записана в показателе степени, как 2 x ≤ 8 5 x — 2 .
Определение 5
Строгие неравенства — неравенства, которые содержат знаки сравнения > (больше) или Пример 3
Пример строгого неравенства:
Заметим, что в случае строгого неравенства не допускается равенство между правой и левой частью выражения. По этой причине такие неравенства и называют строгими.
Нестрогие неравенства — неравенства, которые содержат знаки сравнения geq (больше или равно) либо ≤ (меньше или равно).
Пример нестрого неравенства:
Заметим, что в случае нестрого неравенства допускается равенство левой и правой частей выражения. По этой причине такие неравенства называются нестрогими.
Неравенства с модулем представляют собой такие неравенства, в которых неизвестные находятся под знаком модуля.
Решить неравенство с модулем можно, руководствуясь определением модуля числа:
| x | = x , x ≥ 0 , — x , x 0
Видео:Как решить неравенства с модулем?Скачать
Способы решения неравенств с модулем, пояснения на примерах
Существует определенный алгоритм, который удобно применять для решения заданий на неравенства с модулем:
- Неравенство, записанное в виде | x | a , где а больше нуля, является равносильным системе . Когда а меньше нуля, у неравенства отсутствуют решения.
- Неравенство, записанное в виде |x|>a , где а больше нуля, является равносильным совокупности неравенств: a hfill \ x . При а=0 корни неравенства соответствуют множеству x ∈ ( — ∞ ; 0 ) ∪ ( 0 ; + ∞ ) . При a меньше нуля решения расположены на всей числовой оси: x ∈ ( — ∞ ; + ∞ ) .
В том случае, когда требуется решить неравенство в виде | f ( x ) | > | g ( x ) | и л и | f ( x ) | | g ( x ) | , все части выражения, в том числе, дробные, следует возвести в квадрат. Неравенства, содержащие больше одного выражения, записанного под знаком модуля, решают с применением графического метода интервалов. Этот способ часто применяют в классе на уроке алгебры и при решении домашних заданий.
Разберем несколько примеров для доказательства удобства использования записанной ранее схемы. Попробуем найти решения такого неравенства:
Заметим, что данное выражение можно представить, как систему:
Первое из неравенств системы является равносильным совокупности неравенств:
Неравенство под номером два соответствует системе:
В результате оба неравенства будут решены:
Рассмотрим простое задание с неравенством, которое требуется решить с подробными действиями:
Запишем равносильную совокупность неравенств по правилам:
Если объединить интервалы со всех сторон, то получится:
Решим следующее неравенство аналогичного типа несколько другим способом:
Запишем совокупность неравенств:
При пересечении найденных интервалов получим, что:
Разберем метод решения неравенства с модулем путем возведения в квадрат:
Возведем все части выражения во вторую степень:
( x + 1 ) 2 ≤ ( x — 2 ) 2
Заметим, что в данном случае можно воспользоваться формулами сокращенного умножения, а именно: распишем квадрат суммы и квадрат разности:
x 2 + 2 x + 1 ≤ x 2 — 4 x + 4
С помощью приведения подобных упростим выражение:
6 x ≤ 3 ⇒ 2 x ≤ 1 ⇒ x ≤ 1 2 ⇒ x ∈ ( — ∞ ; 0 , 5 ]
Попробуем справиться с более сложным примером:
| x — 1 | + | x — 2 | ≤ 3
Здесь целесообразно применить метод интервалов. Для этого сначала вычислим нули выражений, которые записаны под знаком модуля:
Заметим, что если перенести полученные значения на числовую ось, то получится три интервала:
x ∈ ( — ∞ ; 1 ] ; ( 1 ; 2 ] ; ( 2 ; + ∞ ] .
Рассмотрим каждый из промежутков:
— ( x — 1 ) — ( x — 2 ) ≤ 3
На пересечении этого решения и первого интервала x ∈ ( — ∞ ; 1 ] получим, что:
Рассмотрим второй интервал:
Здесь неравенство можно записать таким образом:
x — 1 — ( x — 2 ) ≤ 3
Сделаем вывод о том, что для х приемлемы любые значения на данном промежутке, то есть:
На пересечении этого решения и третьего интервала:
Результат можно определить, если объединить найденные решения:
x ∈ [ 0 ; 1 ] ∪ ( 1 ; 2 ] ∪ ( 2 ; 3 ] ⇒ x ∈ [ 0 ; 3 ]
Видео:Неравенства с модулем Часть 1 из 2 Простейшие неравенстваСкачать
Примеры решения задач
Дано неравенство, которое нужно решить:
| 2 x 2 — 9 x + 15 | ≥ 20
Если x ∈ R , получим:
2 x 2 — 9 x + 15 > 0
2 x 2 — 9 x + 15 ≥ 20
2 x 2 — 9 x — 5 ≥ 0
2 ( x — 5 ) ( x + 1 2 ) ≥ 0
x ≤ — 1 2 или x ≥ 5
Ответ: x ∈ — ∞ ; — 1 2 ∪ [ 5 ; + ∞ )
Нужно решить неравенство:
| x — 3 | 2 x 2 — 7 x > 1
| x — 3 | 2 x 2 — 7 x > | x — 3 | 0
0 | x — 3 | 1 , 2 x 2 — 7 x 0 ; | x — 3 | > 1 , 2 x 2 — 7 x > 0
— 1 x — 3 1 , x — 3 ≠ 0 , x ( 2 x — 7 ) 0 ; x — 3 > 1 , x — 3 — 1 , x ( 2 x — 7 ) > 0
2 x 4 , x ≠ 3 , 0 x 7 2 ; x > 4 , x 2 , x > 7 2 , x 0 .
В случае системы:
2 x 4 , x ≠ 3 , 0 x 7 2
решение будет таким:
x > 4 , x 2 , x > 7 2 , x 0 .
x ∈ ( — ∞ ; 0 ) ∪ ( 2 ; 3 ) ∪ ( 3 ; 7 2 ) ∪ ( 4 ; + ∞ )
Ответ: x ∈ ( — ∞ ; 0 ) ∪ ( 2 ; 3 ) ∪ ( 3 ; 7 2 ) ∪ ( 4 ; + ∞ )
Нужно определить решения следующего неравенства:
| x — 6 | > | x 2 — 5 x + 9 |
| x — 6 | > x 2 — 5 x + 9
x — 6 > x 2 — 5 x + 9
x 2 — 5 x + 9 0 — решения отсутствуют;
x — 6 — x 2 + 5 x — 9
Найти решения неравенства:
log 0 , 25 2 x + 1 x + 3 + 1 2 > 1 2
0 2 x + 1 x + 3 + 1 2 1 2
0 4 x + 2 + x + 3 2 ( x + 3 ) 1 2
0 5 x + 5 2 ( x + 3 ) 1 2
5 x + 5 2 ( x + 3 ) ≠ 0 , 5 x + 5 2 ( x + 3 ) 1 2 , 5 x + 5 2 ( x + 3 ) > — 1 2 ;
x ≠ — 1 , x ≠ — 3 , 2 x + 1 x + 3 0 , 3 x + 4 x + 3 > 0
x ≠ — 1 , x ≠ — 3 , — 3 x — 1 2 , x > — 4 3 , x — 3
x ∈ — 4 3 ; — 1 ∪ — 1 ; — 1 2
Ответ: x ∈ — 4 3 ; — 1 ∪ — 1 ; — 1 2
Определить решения неравенств:
| x 2 + 5 x | 6 , | x + 1 | ≤ 1 .
— 6 x 2 + 5 x 6 , — 1 ≤ x + 1 ≤ 1 .
x 2 + 5 x 6 , x 2 + 5 x > — 6 , x + 1 ≤ 1 , x + 1 ≥ — 1
x 2 + 5 x — 6 0 , x 2 + 5 x + 6 > 0 , x ≤ 0 , x ≥ — 2
— 6 x 1 , x > — 2 , x — 3 — 2 ≤ x ≤ 0 .
Ответ: x ∈ ( — 2 ; 0 ]
Дано неравенство, решения которого требуется найти:
| x 2 — 4 x | 5 , | x + 1 | 3 .
x 2 — 4 x 5 , x 2 — 4 x > — 5 , — 3 x + 1 3
x 2 — 4 x — 5 0 , x 2 — 4 x + 5 > 0 , — 4 x 2
— 4 x 2 , x ∈ R , — 4 x 2
Ответ: x ∈ ( — 1 ; 2 )
Дано неравенство, которое требуется решить:
3 2 | x — 1 | + 3 4 3 | x — 1 |
3 2 | x — 1 | — 4 · 3 | x — 1 | + 3 0
Заметим, что это квадратное неравенство по отношению к 3 | x — 1 | :
0 — 1 x — 1 1 , x — 1 ≠ 0
x ∈ ( 0 ; 1 ) ∪ ( 1 ; 2 )
Ответ: x ∈ ( 0 ; 1 ) ∪ ( 1 ; 2 )
x 3 — 1 > 1 — x , x 3 — 1 — 1 ( 1 — x )
( x 3 — 1 ) + ( x — 1 ) > 0 , x ( x 2 — 1 ) 0
( x — 1 ) ( x 2 + x + 1 ) + ( x — 1 ) > 0 , x ( x + 1 ) ( x — 1 ) 0
( x — 1 ) ( x 2 + x + 2 ) > 0 , x ( x + 1 ) ( x — 1 ) 0
x > 1 , x — 1 , 0 x 1 .
x ∈ ( — ∞ ; — 1 ) ∪ ( 0 ; 1 ) ∪ ( 1 ; + ∞ )
Ответ: x ∈ ( — ∞ ; — 1 ) ∪ ( 0 ; 1 ) ∪ ( 1 ; + ∞ )
Дано неравенство, которое требуется решить:
x 2 — | x | — 12 x — 3 ≥ 2 x
x 0 , x 2 — x — 12 x — 3 ≥ 2 x ; x ≥ 0 , x 2 — x — 12 x — 3 ≥ 2 x ,
x 0 , x 2 — x + 12 x — 3 ≤ 0 ; x ≥ 0 , x 2 — x + 12 x — 3 ≤ 0 ,
x 0 , ( x 2 — x + 12 ) ( x — 3 ) ≤ 0 , x — 3 ≠ 0 ; x ≥ 0 , ( x 2 — x + 12 ) ( x — 3 ) ≤ 0 , x — 3 ≠ 0
x 0 , ( x — 4 ) ( x — 3 ) 3 ≤ 0 , x — 3 ≠ 0 ; x ≥ 0 , x — 3 0
💥 Видео
Старт Щелчка. №14 Неравенства с нуля и до ЕГЭ за 5 часов | Логарифмы, степени для №5,6,12Скачать
Уравнения с модулемСкачать
11 класс, 29 урок, Уравнения и неравенства с модулямиСкачать
Неравенство с модулем на ЕГЭ по математикеСкачать
Неравенства с модулем. Как правильно раскрывать модульСкачать
Как решать неравенства с модулем. Два модуля в неравенстве.Скачать
Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать
Как решать неравенства? Математика 10 класс | TutorOnlineСкачать