Уравнения графиками которых являются прямые

Прямые на координатной плоскости
Уравнения графиками которых являются прямыеЛинейная функция
Уравнения графиками которых являются прямыеГрафик линейной функции
Уравнения графиками которых являются прямыеПрямые, параллельные оси ординат
Уравнения графиками которых являются прямыеУравнения вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

Уравнения графиками которых являются прямые

Видео:Линейная функция и ее график. 7 класс.Скачать

Линейная функция и ее график. 7 класс.

Линейная функция

Линейной функцией называют функцию, заданную формулой

y = kx + b,(1)

где k и b – произвольные (вещественные) числа.

При любых значениях k и b графиком линейной функции является прямая линия .

Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .

Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

График линейной функции

При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.

Уравнения графиками которых являются прямые
Рис.1
Уравнения графиками которых являются прямые
Рис.2
Уравнения графиками которых являются прямые
Рис.3

При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.

Уравнения графиками которых являются прямые
Рис.4
Уравнения графиками которых являются прямые
Рис.5
Уравнения графиками которых являются прямые
Рис.6

При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.

k y = kx + b1 и y = kx + b2 ,

имеющие одинаковые угловые коэффициенты и разные свободные члены Уравнения графиками которых являются прямые, параллельны .

имеющие разные угловые коэффициенты Уравнения графиками которых являются прямые, пересекаются при любых значениях свободных членов.

y = kx + b1 и Уравнения графиками которых являются прямые

перпендикулярны при любых значениях свободных членов.

Угловой коэффициент прямой линии

y = kx(2)

равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).

Уравнения графиками которых являются прямые
Рис.10
Уравнения графиками которых являются прямые
Рис.11
Уравнения графиками которых являются прямые
Рис.12

Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .

При Уравнения графиками которых являются прямыепрямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле

Уравнения графиками которых являются прямые

Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

Прямые, параллельные оси ординат

Прямые, параллельные оси Oy , задаются формулой

x = c ,(3)

где c – произвольное число, и изображены на рис. 13, 14, 15.

Уравнения графиками которых являются прямые
Рис.13
Уравнения графиками которых являются прямые
Рис.14
Уравнения графиками которых являются прямые
Рис.15

Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;

Видео:Прямая пропорциональность и её график. Алгебра, 7 классСкачать

Прямая пропорциональность и её график. Алгебра, 7 класс

Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

px + qy = r ,(4)

где p, q, r – произвольные числа.

В случае, когда Уравнения графиками которых являются прямыеуравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .

Уравнения графиками которых являются прямые

Уравнения графиками которых являются прямые

что и требовалось.

В случае, когда Уравнения графиками которых являются прямыеполучаем:

Уравнения графиками которых являются прямые

откуда вытекает, что уравнение (4) задает прямую линию вида (3).

В случае, когда q = 0, p = 0, уравнение (4) имеет вид

0 = r ,(5)

и при r = 0 его решением являются точки всей плоскости:

Уравнения графиками которых являются прямые

В случае, когда Уравнения графиками которых являются прямыеуравнение (5) решений вообще не имеет.

Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением

px + qy = r1 ,(6)

параллельна прямой, заданной уравнением (4) .

Замечание 3 . При любом значении r2 прямая линия, заданная уравнением

qx + py = r2 ,(7)

перпендикулярна прямой, заданной уравнением (4) .

Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и

  1. параллельной к прямой
    4x + 5y = 7 ;(8)
  2. перпендикулярной к прямой (8).

В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде

4x + 5y = r1 ,(9)

где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство

Уравнения графиками которых являются прямые

Итак, уравнение прямой, параллельной к прямой

В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде

– 5x + 4y = r2 ,(10)

где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство

Видео:Линейная функция. Часть 4. Параллельность и перпендикулярность прямых.Скачать

Линейная функция. Часть 4. Параллельность и перпендикулярность прямых.

График линейной функции, его свойства и формулы

Уравнения графиками которых являются прямые

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Видео:Уравнение прямой по графику. ПримерыСкачать

Уравнение прямой по графику. Примеры

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

  • если х = 0, то у = -2;
  • если х = 2, то у = -1;
  • если х = 4, то у = 0;
  • и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Уравнения графиками которых являются прямые

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

ФункцияКоэффициент «k»Коэффициент «b»
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Видео:Функция прямой пропорциональности. 7 класс.Скачать

Функция прямой пропорциональности. 7 класс.

Свойства линейной функции

  1. Область определения функции — множество всех действительных чисел.
  2. Множеством значений функции является множество всех действительных чисел.
  3. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
    Уравнения графиками которых являются прямые
  4. Функция не имеет ни наибольшего, ни наименьшего значений.
  5. Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
    b ≠ 0, k = 0, значит y = b — четная;
    b = 0, k ≠ 0, значит y = kx — нечетная;
    b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
    b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция.
  6. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
  7. График функции пересекает оси координат:
    ось абсцисс ОХ — в точке (-b/k, 0);
    ось ординат OY — в точке (0; b).
  8. x=-b/k — является нулем функции.
  9. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
  10. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
    При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k).
  11. Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
    Если k > 0, то этот угол острый, если k

Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Уравнения графиками которых являются прямые

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

  • если k > 0, то график наклонен вправо;
  • если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
  • если b 1 /2x + 3, y = x + 3.

Уравнения графиками которых являются прямые

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.

Уравнения графиками которых являются прямые

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.

Уравнения графиками которых являются прямые

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

  • график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
  • график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
  • график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

  • С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
    Координаты точки пересечения с осью OY: (0; b).
  • С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
    Координаты точки пересечения с осью OX: (- b /k; 0)

Уравнения графиками которых являются прямые

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

  • В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
    2 = -4(-3) + b
    b = -10
  • Таким образом, нам надо построить график функции y = -4x — 10
    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
    Поставим эти точки в координатной плоскости и соединим прямой:

Уравнения графиками которых являются прямые

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

  1. Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
  2. Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений. Уравнения графиками которых являются прямые
  3. Вычтем из второго уравнения системы первое, и получим k = 3.
    Подставим значение k в первое уравнение системы, и получим b = -2.

Видео:Как запомнить графики функцийСкачать

Как запомнить графики функций

4.13. Уравнения прямых на координатной плоскости

Давайте рассмотрим такие функций, графики которых имеют вид прямых. Простоты ради, мы будем иметь дело с безразмерными величинами, а значит, в качестве осей у нас будут выступать простые числовые прямые, и все наши чертежи мы будем делать на обычной координатной плоскости.

Прямая, проходящая через начало координат

Построение графика по заданной функции

Пусть переменная (y) пропорциональна переменной (x) с коэффициентом пропорциональности (k) :

Давайте договоримся, что (x) здесь — это независимая переменная, а (y) — зависимая. Коэффициент (k) играет роль константы (параметра). В таких случаях говорят, что (y) является (однородной) линейной функцией от (x) . Графиком этой функции, как мы хорошо знаем, является прямая, проходящая через начало координат ((0, 0)) . Для построения этой прямой нам достаточно определить еще какую-либо одну ее точку ((x_1, y_1)) . Для этого положим, например, (x_1 = 1) . Тогда (y_1 = k cdot 1 = k) . Проводим через эту точку и начало координат прямую линию. Это и есть график функции (y) от (x) . Так, по крайней мере, обстоит дело в теории, а на практике точку ((x_1, y_1)) лучше брать настолько далеко от начала координат, насколько позволяет чертеж. В этом стучае прямую удается провести наиболее точно. Ниже приведен пример такого построения для функции (y=frac x) .

Уравнения графиками которых являются прямые

Восстановление функции по графику

Решим теперь обратную задачу. Пусть на координатной плоскости с осями (x) и (y) нам дана прямая, проходящая через начало координат. Спрашивается: графиком какой функции она является? При этом подразумевается, что функция должна быть задана в виде формулы, связывающей переменные (x) и (y) . Такая формула носит название уравнения графика функции. В данном случае речь идет об уравнении прямой, проходящей через точку ((0,0)) .

Заранее ясно, что это уравнение имеет вид

От нас фактически только требуется найти значение константы (k) . Для этого отметим на прямой произвольную точку, отличную от ((0,0)) , и определим ее координаты ((x_1, y_1).) Эти координаты, очевидно, связаны соотношением

При этом следует особо подчеркнуть, что константа (k) не зависит от выбора точки ((x_1, y_1).) Какую бы точку на прямой мы не выбрали в качестве ((x_1, y_1),) мы придем к одному и тому же значению (k) . Таким образом,

Пример нахождения уравнения прямой приведен на следующем рисунке.

Уравнения графиками которых являются прямые

Отметим два особых случая. Во-первых, прямая может совпасть с осью (x) . Тогда значение (y) остается постоянным и равным нулю на всем ее протяжении. Тем не менее наше общее решение остается в силе. При этом оказывается, что (k = 0) и переменную (y) можно всё еще формально считать функцией от (x) :

Во-вторых, прямая может совпасть с осью (y) . В этом случае в каждой ее точке (x = 0) . Формула для константы (k) оказывается неприменимой, потому что число (x_0) , стоящее в знаменателе, обращается в нуль. Приходится признать, что мы не можем подобрать такую функцию (y) от (x) , которая имела бы подобный график. Разве что, мы можем теперь принять (y) за независимую переменную и формально рассматривать (x) как функцию от (y)

Несложно убедиться, что всякая точка, лежащая на оси (y) , удовлетворяет этому равенству. Заметим, что если бы мы захотели написать уравнение прямой, проходящей через начало координат, в самом общем виде, то мы могли бы это сделать так:

Это соотношение между (x) и (y) остается справедливым в обоих рассмотренных частных случаях, однако выбор параметров не является однозначным, так как в качестве пары чисел ((x_1, y_1)) можно взять координаты любой точки, принадлежащей прямой.

Произвольная прямая

Восстановление функции по графику

Начнем с обратной задачи. Пусть теперь на координатной плоскости дана произвольная прямая, не проходящая через начало координат. Вопрос нас будет интересовать всё тот же: графиком какой функции она является или, короче говоря, каково уравнение этой прямой?

Уравнения графиками которых являются прямые

Отметим на прямой две любые несовпадающие точки и обозначим их координаты через ((x_0, y_0)) и ((x_1,y_1)) . Поместим в точку ((x_0, y_0)) начало новой системы координат с осями (x’) и (y’) , сонаправленными с соответствующими осями (x) и (y) старой системы.

Уравнения графиками которых являются прямые

Тогда координаты другой отмеченной точки в новой системе окажутся равны

(begin x_1′ \ y_1′ end = begin x_1 \ y_1 end — begin x_0 \ y_0 end = begin x_1 — x_0 \ y_1 — y_0end.)

Вообще, как мы знаем, новые («штрихованные») координаты любой точки связаны со старыми («нештрихованными») координатами соотношением

Наша прямая проходит через начало координат новой системы, поэтому мы можем сразу же выписать ее уравнение в «штрихованных» переменных:

Переходя к «нештрихованным» переменным, получаем

Что и решает поставленную задачу.

При желании, можно еще выразить функцию (y) от (x) в явном виде:

(y = k,x — k,x_0 + y_0)

(y = k,x + b,) где (b = — k,x_0 + y_0.)

Значения констант (k) и (b) не зависят от выбора точек ((x_0, y_0)) и ((x_1,y_1)) . Какие бы точки на заданной прямой мы не взяли, мы всегда придем к одним и тем же значениям (k) и (b) . Заметим, что из-за дополнительного слагаемого (b) переменные (x) и (y) не пропорциональны друг другу. Поэтому константа (k) называется теперь не коэффициентом пропорциональности, как это было раньше, а угловым коэффициентом. Название это происходит от того, что значение (k) тесно связано с углом наклона прямой по отношению к оси (x) . Чем круче идет прямая, тем больше ее угловой коэффициент.

Константу (b) иногда называют свободным членом. Как легко видеть, переменная (y) равна (b) при (x = 0) . Иными словами, (b) — это точка на оси (y) , в которой эта ось пересекается с нашей прямой. Если (b = 0) , то прямая проходит через начало координат, и мы возвращаемся к частному случаю, рассмотренному ранее.

Из наших рассуждений следует, что любая прямая на координатной плоскости может быть описана уравнением вида

при подходящем выборе констант (k) и (b) . Единственным исключением является особый случай, когда в выражении для углового коэффициента (k = frac) знаменатель обращается в ноль. Это происходит, если (x_1 = x_0) . Это значит, что прямая перпендикулярна оси (x) (и соответственно параллельна оси (y) ). При таких обстоятельствах (x) неизбежно утрачивает роль независимой переменной, но может формально рассматриваться как функция от (y) :

(x = 0 cdot (y — y_0) + x_0.)

В совершенно общем виде уравнение прямой можно написать следующим образом:

((x_1-x_0) (y-y_0) = (y_1-y_0) (x-x_0).)

При этом, однако, выбор двух пар параметров ((x_0, y_0)) и ((x_1, y_1)) (которые, по смыслу, являются координатами двух произвольных точек, лежащих на прямой) неоднозначен.

Построение графика по заданной функции

Теперь давайте выясним, как построить график неоднородной линейной функции (y) от (x) , которая определяется как

где (k) и (b) — любые действительные числа. Как мы только что выяснили, к такому виду сводится уравнение произвольной прямой (при условии, что она не параллельна оси (y) ). Строго говоря, это не исключает, что при некоторых значения параметров (k) и (b) график этой функции может отличаться от прямой линии. Давайте убедимся, что этого никогда не происходит. Перепишем данное нам уравнение следующим образом:

Если перейти в новую, штрихованную, систему координат с началом в точке ((0, b)) и с осями (x’) и (y’) , сонаправленными с соответствующими осями старой системы, то в новых координатах уравнение примет вид:

Мы получим тогда не что иное, как уравнение пропорциональной зависимости, которое гарантировано задает прямую линию. Значит, и график неоднородной линейной функции

представляет собой прямую линию при любых значениях параметров (k) и (b) . Но для того, чтобы построить прямую, достаточно знать две ее произвольные точки ((x_0, y_0)) и ((x_1, y_1)) . В качестве (x_0) и (x_1) можно взять, например, соответственно ноль и единицу. Тогда

(y_0 = b) (при (x_0 = 0) ),
(y_1 = k+b,) (при (x_1 = 1) ).

Проводим прямую через точки ((x_0, y_0)) и ((x_1, y_1)) — и задача решена. На практике, впрочем, лучше брать такие точки, которые расположены друг от друга по возможности дальше, насколько позволяет чертеж. Пример графика неоднородной линейной функции со значением параметров (k = frac) и (b = 1) представлен на следующем рисунке.

Уравнения графиками которых являются прямые

Конспект

(1) . Линейная функция (y = k,x + b) называется однородной при (b = 0) и неоднородной при (b ne 0.) Ее график на координатной плоскости представляет собой прямую линию, которая строится по двум произвольным точкам.

(2) . Уравнение прямой, проходящей через начало координат: (y = frac x,) где ((x_1, y_1)) — координаты произвольной точки, принадлежащей этой прямой ((x_1 ne 0).) Исключение: прямая совпадает с осью (y) . Тогда уравнение прямой: (x = 0.)

(3) . Уравнение произвольной прямой: (y-y_0 = frac (x-x_0),) где ((x_0, y_0)) и ((x_1, y_1)) — координаты двух различных произвольных точек, принадлежащих этой прямой. Исключение: прямая проходит через точку ((x_0, y_0)) параллельно оси (y) . Тогда уравнение прямой: (x = x_0) .

📽️ Видео

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Линейная функция и её график. Алгебра, 7 классСкачать

Линейная функция и её график. Алгебра, 7 класс

Графики функций. Задание №11 | Математика ОГЭ 2023 | УмскулСкачать

Графики функций. Задание №11 | Математика ОГЭ 2023 | Умскул

Урок ГРАФИК ЛИНЕЙНОЙ ФУНКЦИИ 7 КЛАСССкачать

Урок ГРАФИК ЛИНЕЙНОЙ ФУНКЦИИ 7 КЛАСС

ОГЭ по математике. Задача 5-2Скачать

ОГЭ по математике. Задача 5-2

Взаимное расположение прямых на плоскости. 7 класс.Скачать

Взаимное расположение прямых на плоскости. 7 класс.

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Все графики функций за 20 секундСкачать

Все графики функций за 20 секунд

График функции. Как определить? #shortsСкачать

График функции. Как определить? #shorts
Поделиться или сохранить к себе: