Уравнения функций и их графики названия

Алгебра. Урок 5. Графики функций

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Графики функций”.

Уравнения функций и их графики названия

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Декартова система координат
  • Функция

Видео:Функция у=х² и у=х³ и их графики. Алгебра, 7 классСкачать

Функция у=х² и у=х³ и их графики. Алгебра, 7 класс

Декартова система координат

Система координат – это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчета для каждой из них.

Координатные оси – прямые, образующие систему координат.

Ось абсцисс (ось x ) – горизонтальная ось.

Ось ординат (ось y ) – вертикальная ось.

Уравнения функций и их графики названия

Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Функция

Функция – это отображение элементов множества X на множество Y . При этом каждому элементу x множества X соответствует одно единственное значение y множества Y .

Видео:Как получить легкий балл на ОГЭ? / Подробный разбор заданий с графиками функций по математикеСкачать

Как получить легкий балл на ОГЭ? / Подробный разбор заданий с графиками функций по математике

Прямая

Линейная функция – функция вида y = a x + b где a и b – любые числа.

Графиком линейной функции является прямая линия.

Рассмотрим, как будет выглядеть график в зависимости от коэффициентов a и b :

Если a > 0 , прямая будет проходить через I и III координатные четверти.

b – точка пересечения прямой с осью y .

Если a 0 , прямая будет проходить через II и IV координатные четверти.

b – точка пересечения прямой с осью y .

Уравнения функций и их графики названия

Если a = 0 , функция принимает вид y = b .

Отдельно выделим график уравнения x = a .

Важно : это уравнение не является функцией так как нарушается определение функции ( функция ставит в соответствие каждому элементу x множества X одно единственно значение y множества Y ). Данное уравнение ставит в соответствие одному элементу x бесконечное множества элементов y . Тем не менее, график данного уравнения построить можно. Просто не будем называть его гордым словом «Функция».

Видео:Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Парабола

Графиком функции y = a x 2 + b x + c является парабола .

Для того, чтобы однозначно определить, как располагается график параболы на плоскости, нужно знать, на что влияют коэффициенты a , b , c :

  1. Коэффициент a указывает на то, куда направлены ветки параболы.
  • Если a > 0 , ветки параболы направлены вверх.
  • Если a 0 , ветки параболы направлены вниз.
  1. Коэффициент c указывает, в какой точке парабола пересекает ось y .
  2. Коэффициент b помогает найти x в – координату вершины параболы.
  1. Дискриминант позволяет определить, сколько точек пересечения у параболы с осью .
  • Если D > 0 – две точки пересечения.
  • Если D = 0 – одна точка пересечения.
  • Если D 0 – нет точек пересечения.

Видео:Логарифмическая функция, ее свойства и график. 11 класс.Скачать

Логарифмическая функция, ее свойства и график. 11 класс.

Гипербола

Графиком функции y = k x является гипербола .

Характерная особенность гиперболы в том, что у неё есть асимптоты.

Асимптоты гиперболы – прямые, к которым она стремится, уходя в бесконечность.

Ось x – горизонтальная асимптота гиперболы

Ось y – вертикальная асимптота гиперболы.

На графике асимптоты отмечены зелёной пунктирной линией.

Если коэффициент k > 0 , то ветви гиперолы проходят через I и III четверти.

0″ height=»346″ width=»346″ sizes=»(max-width: 346px) 100vw, 346px» data-srcset=»/wp-content/uploads/2017/01/Гипербола-1.png 346w,/wp-content/uploads/2017/01/Гипербола-1-150×150.png 150w,/wp-content/uploads/2017/01/Гипербола-1-300×300.png 300w,/wp-content/uploads/2017/01/Гипербола-1-176×176.png 176w,/wp-content/uploads/2017/01/Гипербола-1-60×60.png 60w, https://epmat.ru/wp-content/uploads/2017/01/Гипербола-1.png»>

Если k 0, ветви гиперболы проходят через II и IV четверти.

Чем меньше абсолютная величина коэффиента k (коэффициент k без учета знака), тем ближе ветви гиперболы к осям x и y .

Видео:Линейная функция и ее график. 7 класс.Скачать

Линейная функция и ее график. 7 класс.

Квадратный корень

Функция y = x имеет следующий график:

Видео:Графики функций. Алгебра, 7 классСкачать

Графики функций. Алгебра, 7 класс

Возрастающие/убывающие функции

Функция y = f ( x ) возрастает на интервале , если большему значению аргумента (большему значению x ) соответствует большее значение функции (большее значение y ) .

То есть чем больше (правее) икс, тем больше (выше) игрек. График поднимается вверх (смотрим слева направо)

Примеры возрастающих функций:

Функция y = f ( x ) убывает на интервале , если большему значению аргумента (большему значению x ) соответствует меньшее значение функции (большее значение y ) .

То есть чем больше (правее) икс, тем меньше (ниже) игрек. График опускается вниз (смотрим слева направо).

Примеры убывающих функций:

Для того, чтобы найти наибольшее значение функции , находим самую высокую точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наибольшим значением функции.

Для того, чтобы найти наименьшее значение функции , находим самую нижнюю точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наименьшим значением функции.

Видео:Графики функций. Задание №11 | Математика ОГЭ 2023 | УмскулСкачать

Графики функций. Задание №11 | Математика ОГЭ 2023 | Умскул

Задание №11 из ОГЭ 2020. Типовые задачи и принцип их решения.

Видео:Как запомнить графики функцийСкачать

Как запомнить графики функций

Элементарные функции и их графики

Понятие функции — одно из ключевых в математике. О нём подробно рассказано в статье «Что такое функция».

И конечно, в задачах части 2 Профильного ЕГЭ по математике без них не обойтись. А если вы выбрали технический или экономический вуз — первая же лекция по матанализу будет посвящена именно элементарным функциями и их графикам.

Но это не всё. Математические функции, изучением которых мы занимаемся, — это не что-то такое выдуманное или существующее только в замкнутом пространстве учебника. Они являются отражением реальных взаимосвязей и процессов, происходящих в природе и обществе.

Существует всего пять типов элементарных функций:

1. Степенные
К этому типу относятся линейные, квадратичные, кубические, Уравнения функций и их графики названия, Уравнения функций и их графики названия, Уравнения функций и их графики названияВсе они содержат выражения вида x α .

2. Показательные
Это функции вида y = a x

4. Тригонометрические
В их формулах присутствуют синусы, косинусы, тангенсы и котангенсы.

Элементарными они называются потому, что из них, как из элементов, получаются все остальные, встречающиеся в школьном курсе. Например, y = x 2 · e x — произведение квадратичной и показательной функций; y = sin(a x ) — сложная функция, то есть комбинация двух функций — показательной и тригонометрической.

Графики и свойства основных элементарных функций следует знать наизусть.

1. Линейная функция y = xУравнения функций и их графики названия2. Квадратичная парабола y = x 2Уравнения функций и их графики названия3. Функция y = x n ,
n — натуральное, n > 1
n — чётное
n = 2, 4, 6.Уравнения функций и их графики названияn — нечётное
n = 3, 5, 7.Уравнения функций и их графики названия4.ГиперболаУравнения функций и их графики названия5. Уравнения функций и их графики названияУравнения функций и их графики названия6. Уравнения функций и их графики названияУравнения функций и их графики названия

Показательная функция y = a x

a > 1Уравнения функций и их графики названия
0 1Уравнения функций и их графики названия
0 2 + 5? Об этом — статья «Преобразования графиков функций».

Обратите внимание: уравнения, которые вы решаете, обычно относятся к одному из этих пяти типов. Для каждого типа — свои способы решения. Это и понятно: они основаны на тех или иных свойствах функций.

Почему в уравнении 3 x = 3 5 мы можем «отбросить» основания и записать, что x = 5? Да потому что показательная функция y = 3 x возрастает и каждое значение принимает только один раз.

Почему уравнение имеет бесконечно много решений, которые записываются в виде серии: Уравнения функций и их графики названия, где n — целое? Потому что функция y = sinx — периодическая, то есть каждое свое значение принимает бесконечно много раз.

Зная графики элементарных функций, вы уже не запутаетесь с ОДЗ уравнений и неравенств. Вы сможете решать сложные задачи графически — а это часто во много раз легче и быстрее, чем аналитически.

Есть еще и такие уравнения, где слева и справа стоят функции разных типов. Для их решения есть графический способ, а также специальные приемы, о которых рассказывается в статье «Метод оценки».

Видео:Функция y=k/x и ее график. 7 класс.Скачать

Функция y=k/x и ее график. 7 класс.

Построение графиков функций

Уравнения функций и их графики названия

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Линейная функция и её график. Алгебра, 7 классСкачать

Линейная функция и её график. Алгебра, 7 класс

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида Уравнения функций и их графики названияобласть определения выглядит так

  • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Видео:Алгебра 7 класс. 19 сентября. Числовые промежуткиСкачать

Алгебра 7 класс. 19 сентября. Числовые промежутки

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

Уравнения функций и их графики названия

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Уравнения функций и их графики названия

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Видео:Квадратичная функция и ее график. 8 класс.Скачать

Квадратичная функция и ее график. 8 класс.

Исследование функции

Важные точки графика функции y = f(x):

  • стационарные и критические точки;
  • точки экстремума;
  • нули функции;
  • точки разрыва функции.

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке: Уравнения функций и их графики названия

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Уравнения функций и их графики названия

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

  1. Найти область определения функции.
  2. Найти область допустимых значений функции.
  3. Проверить не является ли функция четной или нечетной.
  4. Проверить не является ли функция периодической.
  5. Найти нули функции.
  6. Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
  7. Найти асимптоты графика функции.
  8. Найти производную функции.
  9. Найти критические точки в промежутках возрастания и убывания функции.
  10. На основании проведенного исследования построить график функции.

У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

Видео:Как построить график функции без таблицыСкачать

Как построить график функции без таблицы

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции Уравнения функций и их графики названия

Упростим формулу функции:

Уравнения функций и их графики названияпри х ≠ -1.

График функции — прямая y = x — 1 с выколотой точкой M (-1; -2).

Задача 2. Построим график функцииУравнения функций и их графики названия

Выделим в формуле функции целую часть:

Уравнения функций и их графики названия

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции Уравнения функций и их графики названия

Уравнения функций и их графики названия

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

  1. Уравнения функций и их графики названия
  2. Уравнения функций и их графики названия
  3. Уравнения функций и их графики названия

Вспомним, как параметры a, b и c определяют положение параболы.

Ветви вниз, следовательно, a 0.

Точка пересечения с осью Oy — c = 0.

Координата вершины Уравнения функций и их графики названия, т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

Ветви вниз, следовательно, a 0.

Координата вершины Уравнения функций и их графики названия, т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

xy
0-1
12

Уравнения функций и их графики названия

Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

xy
02
11

Уравнения функций и их графики названия

k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

xy
00
12

Уравнения функций и их графики названия

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

Уравнения функций и их графики названия

k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

Задача 5. Построить график функции Уравнения функций и их графики названия

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Уравнения функций и их графики названия

Задача 6. Построить графики функций:

б) Уравнения функций и их графики названия

г) Уравнения функций и их графики названия

д) Уравнения функций и их графики названия

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а) Уравнения функций и их графики названия

Преобразование в одно действие типа f(x) + a.

Уравнения функций и их графики названия

Сдвигаем график вверх на 1:

Уравнения функций и их графики названия

б)Уравнения функций и их графики названия

Преобразование в одно действие типа f(x — a).

Уравнения функций и их графики названия

Сдвигаем график вправо на 1:

Уравнения функций и их графики названия

В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.

Уравнения функций и их графики названия

Сдвигаем график вправо на 1:

Уравнения функций и их графики названия

Сдвигаем график вверх на 2:

Уравнения функций и их графики названия

г) Уравнения функций и их графики названия

Преобразование в одно действие типа Уравнения функций и их графики названия

Уравнения функций и их графики названия

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

Уравнения функций и их графики названия

Уравнения функций и их графики названия

д) Уравнения функций и их графики названия

Мы видим три преобразования вида f(ax), f (x + a), -f(x).

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

Уравнения функций и их графики названия
Уравнения функций и их графики названия
Уравнения функций и их графики названия

Сжимаем график в два раза вдоль оси абсцисс:

Уравнения функций и их графики названия
Уравнения функций и их графики названия

Сдвигаем график влево на 1/2 вдоль оси абсцисс:

Уравнения функций и их графики названия
Уравнения функций и их графики названия

Отражаем график симметрично относительно оси абсцисс:

🎥 Видео

График функции y=x² (y=аx).Скачать

График функции y=x² (y=аx).

Функция у=к/х и её график. Алгебра, 8 классСкачать

Функция у=к/х и её график. Алгебра, 8 класс

Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

Урок ГРАФИК ЛИНЕЙНОЙ ФУНКЦИИ 7 КЛАСССкачать

Урок ГРАФИК ЛИНЕЙНОЙ ФУНКЦИИ 7 КЛАСС

11 класс, 11 урок, Показательная функция, её свойства и графикСкачать

11 класс, 11 урок, Показательная функция, её свойства и график

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола
Поделиться или сохранить к себе: