Химия | 5 — 9 классы
Напишите уравнение диссоциации фтороводородной кислоты!
- Напишите уравнение реакции диссоциации плавиковой кислоты?
- Напишите уравнение реакций электролитической диссоциации бромоводородной кислоты?
- Напишите уравнения диссоциации угольной кислоты и названия анионов?
- Степень диссоциации фтороводородной кислоты равна 8%?
- Напишите уравнения электролической диссоциации кислот а)H3PO4 б)HMnO4?
- Напишите уравнение диссоциации следующих кислот : HNO3, H2SO3, HClO4?
- Напишите уравнения электролитической диссоциации метановой кислоты?
- Напишите уравнения электролитической диссоциации хлорной кислоты?
- Степень диссоциации фтороводородной кислоты равна 8%?
- Напишите уравнения электролитической диссоциации азотной кислоты ; гидроксида аммония?
- УЧЕБНАЯ КНИГА ПО ХИМИИ
- § 6.3. Сильные и слабые электролиты
- Уравнения электролитической диссоциации фтороводородной кислоты
- 📸 Видео
Видео:Электролитическая диссоциация кислот, оснований и солей. 9 класс.Скачать
Напишите уравнение реакции диссоциации плавиковой кислоты?
Напишите уравнение реакции диссоциации плавиковой кислоты.
Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать
Напишите уравнение реакций электролитической диссоциации бромоводородной кислоты?
Напишите уравнение реакций электролитической диссоциации бромоводородной кислоты.
Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ кислот оснований и солей | Как писать УРАВНЕНИЯ ДИССОЦИАЦИЙСкачать
Напишите уравнения диссоциации угольной кислоты и названия анионов?
Напишите уравнения диссоциации угольной кислоты и названия анионов.
Видео:КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и МеталламиСкачать
Степень диссоциации фтороводородной кислоты равна 8%?
Степень диссоциации фтороводородной кислоты равна 8%.
Определите количество молекул (в молях) кислоты, не распавшихся на ионы, в 220 г ее 2% — го раствора.
Видео:Задание 13: Все про электролитическую диссоциацию на ОГЭСкачать
Напишите уравнения электролической диссоциации кислот а)H3PO4 б)HMnO4?
Напишите уравнения электролической диссоциации кислот а)H3PO4 б)HMnO4.
Видео:Степень электролитической диссоциации. Сильные и слабые электролиты. 9 класс.Скачать
Напишите уравнение диссоциации следующих кислот : HNO3, H2SO3, HClO4?
Напишите уравнение диссоциации следующих кислот : HNO3, H2SO3, HClO4.
Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать
Напишите уравнения электролитической диссоциации метановой кислоты?
Напишите уравнения электролитической диссоциации метановой кислоты?
Видео:Свойства кислот с точки зрения теории электролитической диссоциации. 9 класс.Скачать
Напишите уравнения электролитической диссоциации хлорной кислоты?
Напишите уравнения электролитической диссоциации хлорной кислоты.
Видео:Ионные уравнения реакций. Как составлять полные и сокращенные уравненияСкачать
Степень диссоциации фтороводородной кислоты равна 8%?
Степень диссоциации фтороводородной кислоты равна 8%.
Определите количество молекул (в молях) кислоты, не распавшихся на ионы, в 220 г ее 2% — го раствора.
Видео:Химия 9 класс (Урок№5 - Сущность процесса электролитической диссоциации.)Скачать
Напишите уравнения электролитической диссоциации азотной кислоты ; гидроксида аммония?
Напишите уравнения электролитической диссоциации азотной кислоты ; гидроксида аммония.
Вы зашли на страницу вопроса Напишите уравнение диссоциации фтороводородной кислоты?, который относится к категории Химия. По уровню сложности вопрос соответствует учебной программе для учащихся 5 — 9 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.
Дано : m(Zn) = 7 г V(H2) = 2, 24 л Найти : Содержит ли образец цинка примеси? Решение : Zn + 2HCl — > ZnCl2 + H2 n(H2) = V / Vm = 2, 24 л / 22, 4 л / моль = 0, 1 моль n(Zn) = n(H2) m(Zn)чист. = n * M = 0, 1 моль * 65, 37 г / моль = 6, 537 г Получае..
ОКИСЛИТЕЛЬНО — ВОССТАНОВИТЕЛЬНАЯ РЕАКЦИЯ.
6Li + N2 = 2Li3N вроде так.
6Li + N2 = 2Li3N И все .
1) поскольку у нас в формулеNa3PO4 атомов натрия 3, то количество веществаNa3PO4будет в 3 раза меньше чем кол — ва Na найдем кол — во(n)Na n(Na) = m / M = 23 / 23 = 1 моль, тогда n(Na3PO4) будет = n / 3 = 1 / 3 = 0. 33 моль 2)поскольку у нас в форму..
1) CH2 = CH — CH2 — CH2 — CH2 — CH3 гексен — 1 2) CH3 — CH = CH — CH2 — CH2 — CH3 гексен — 2 3) CH3 — CH2 — CH = CH — CH2 — CH3 гексен — 3 4) CH2 = C(CH3) — CH2 — CH2 — CH3 2 — метилпентен — 1 5) CH2 = CH — CH(CH3) — CH2 — CH3 3 — метилпентен — 1 6) ..
Дано : V(CO2) = 836мл m(C) = 0. 105г m(CuO) = 1. 4г w(HNO3) = 20% p(HNO3) = 1. 12г / мл Найти : V(HNO3) — ? Решение : CO2 + C — — — >2CO n(CO2) = V / Vm = 0. 836 / 22. 4 = 0. 0373моль M(C) = 12г / моль n(C) = m / M = 0. 105 / 12 = 0. 00875мо..
K + H2 = KH Li + CaO = не рааг.
BaCl₂ = Ba²⁺ + 2Cl⁻ при диссоциации 1 моль хлорида бария образуется 1 моль катионов 3Ca(OH)₂ = 3Ca²⁺ + 6OH⁻ при диссоциации 3 моль гидроксида кальция образуется 3 моль катионов Al₂(SO₄)₃ = 2Al³⁺ + 3SO₄²⁻ при диссоциации 1 моль сульфата алюминия образ..
Видео:Химия | Молекулярные и ионные уравненияСкачать
УЧЕБНАЯ КНИГА ПО ХИМИИ
ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ,
СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10 КЛАССОВ,
РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ
УЧЕБНИКЗАДАЧНИКЛАБОРАТОРНЫЙ ПРАКТИКУМНАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ
Видео:Механизм электролитической диссоциации. 9 класс.Скачать
§ 6.3. Сильные и слабые электролиты
Материал этого раздела частично вам знаком по ранее изученным школьным курсам химии и из предыдущего раздела. Кратко повторим, что вам известно, и познакомимся с новым материалом.
В предыдущем разделе мы обсуждали поведение в водных растворах некоторых солей и органических веществ, полностью распадающихся на ионы в водном растворе.
Имеется ряд простых, но несомненных доказательств того, что некоторые вещества в водных растворах распадаются на частицы. Так, водные растворы серной H2SO4, азотной HNO3, хлорной HClO4, хлороводородной (соляной) HCl, уксусной CH3COOH и других кислот имеют кислый вкус. В формулах кислот общей частицей является атом водорода, и можно предположить, что он (в виде иона) является причиной одинакового вкуса всех этих столь различных веществ.
Образующиеся при диссоциации в водном растворе ионы водорода придают раствору кислый вкус, поэтому такие вещества и названы кислотами. В природе только ионы водорода имеют кислый вкус. Они создают в водном растворе так называемую кислотную (кислую) среду.
Запомните, когда вы говорите «хлороводород», то имеете в виду газообразное и кристаллическое состояние этого вещества, но для водного раствора следует говорить «раствор хлороводорода», «хлороводородная кислота» или использовать общепринятое название «соляная кислота», хотя состав вещества в любом состоянии выражается одной и той же формулой – НСl.
Водные растворы гидроксидов лития (LiOH), натрия (NаОН), калия (КОН), бария (Ва(ОН)2), кальция (Са(ОН)2) и других металлов имеют одинаковый неприятный горько-мыльный вкус и вызывают на коже рук ощущение скольжения. По-видимому, за это свойство ответственны гидроксид-ионы ОН – , входящие в состав таких соединений.
Хлороводородная HCl, бромоводородная HBr и йодоводородная HI кислоты реагируют с цинком одинаково, несмотря на свой различный состав, т. к. в действительности с цинком реагирует не кислота:
Zn + 2НСl = ZnСl2 + Н2,
а ионы водорода:
Zn + 2H + = Zn 2+ + Н2,
и образуются газообразный водород и ионы цинка.
Смешивание некоторых растворов солей, например хлорида калия KCl и нитрата натрия NaNO3, не сопровождается заметным тепловым эффектом, хотя после выпаривания раствора образуется смесь кристаллов четырех веществ: исходных – хлорида калия и нитрата натрия – и новых – нитрата калия КNO3 и хлорида натрия NaCl. Можно предположить, что в растворе две исходные соли полностью распадаются на ионы, которые при его выпаривании образуют четыре кристаллических вещества:
Сопоставляя эти сведения с электропроводностью водных растворов кислот, гидроксидов и солей и с рядом других положений, С.А.Аррениус в 1887 г. выдвинул гипотезу электролитической диссоциации, согласно которой молекулы кислот, гидроксидов и солей при растворении их в воде диссоциируют на ионы.
Изучение продуктов электролиза позволяет приписать ионам положительные или отрицательные заряды. Очевидно, если кислота, например азотная НNO3, диссоциирует, предположим, на два иона и при электролизе водного раствора на катоде (отрицательно заряженный электрод) выделяется водород, то, следовательно, в растворе имеются положительно заряженные ионы водорода Н + . Тогда уравнение диссоциации следует записать так:
НNO3 = Н + + .
Электролитическая диссоциация – полный или частичный распад соединения при его растворении в воде на ионы в результате взаимодействия с молекулой воды (или другого растворителя).
Электролиты – кислоты, основания или соли, водные растворы которых проводят электрический ток в результате диссоциации.
Вещества, не диссоциирующие в водном растворе на ионы и растворы которых не проводят электрический ток, называются неэлектролитами.
Диссоциация электролитов количественно характеризуется степенью диссоциации – отношением числа распавшихся на ионы «молекул» (формульных единиц) к общему числу «молекул» растворенного вещества. Степень диссоциации обозначается греческой буквой . Например, если из каждых 100 «молекул» растворенного вещества 80 распадаются на ионы, то степень диссоциации растворенного вещества равна: = 80/100 = 0,8, или 80%.
По способности к диссоциации (или, как говорят, «по силе») электролиты разделяют на сильные, средние и слабые. По степени диссоциации к сильным электролитам относят те из них, для растворов которых > 30%, к слабым – 30%) относят перечисленные ниже группы соединений.
1. Многие неорганические кислоты, например хлороводородная НCl, азотная HNO3, серная H2SО4 в разбавленных растворах. Самая сильная неорганическая кислота – хлорная НСlО4.
Сила некислородных кислот возрастает в ряду однотипных соединений при переходе вниз по подгруппе кислотообразующих элементов:
Фтороводородная (плавиковая) кислота HF растворяет стекло, но это вовсе не говорит о ее силе. Эта кислота из бескислородных галогенсодержащих относится к кислотам средней силы из-за высокой энергии связи Н–F, способности молекул HF к объединению (ассоциации) благодаря сильным водородным связям, взаимодействия ионов F – с молекулами НF (водородные связи) с образованием ионов и других более сложных частиц. В результате концентрация ионов водорода в водном растворе этой кислоты оказывается значительно пониженной, поэтому фтороводородную кислоту считают средней силы.
Фтороводород реагирует с диоксидом кремния, входящим в состав стекла, по уравнению:
Фтороводородную кислоту нельзя хранить в стеклянных сосудах. Для этого используют сосуды из свинца, некоторых пластмасс и стекла, стенки которых покрыты изнутри толстым слоем парафина. Если для «травления» стекла использовать газообразный фтороводород, то поверхность стекла становится матовой, что используется для нанесения на стекло надписей и различных рисунков. «Травление» стекла водным раствором фтороводородной кислоты приводит к разъеданию поверхности стекла, которая остается прозрачной. В продаже обычно бывает 40%-й раствор плавиковой кислоты.
Сила однотипных кислородных кислот изменяется в противоположном направлении, например йодная кислота НIО4 слабее хлорной кислоты НСlО4.
Если элемент образует несколько кислородных кислот, то наибольшей силой обладает кислота, в которой кислотообразующий элемент имеет самую высокую валентность. Так, в ряду кислот НСlО (хлорноватистая) – НСlО2 (хлористая) – НСlО3 (хлорноватая) – НСlО4 (хлорная) последняя наиболее сильная.
Один объем воды растворяет около двух объемов хлора. Хлор (примерно половина его) взаимодействует с водой:
Хлороводородная кислота является сильной, в ее водном растворе практически нет молекул HCl. Правильнее уравнение реакции записать так:
Cl2 + H2O = H + + Cl – + HClO – 25 кДж/моль.
Образующийся раствор называют хлорной водой.
Хлорноватистая кислота – быстродействующий окислитель, поэтому ее применяют для отбеливания тканей.
2. Гидроксиды элементов главных подгрупп I и II групп периодической системы: LiОН, NaОН, КОН, Са(ОН)2 и др. При переходе вниз по подгруппе по мере усиления металлических свойств элемента сила гидроксидов возрастает. Растворимые гидроксиды главной подгруппы I группы элементов относят к щелочам.
Щелочами называют растворимые в воде основания. К ним относят также гидроксиды элементов главной подгруппы II группы (щелочно-земельные металлы) и гидроксид аммония (водный раствор аммиака). Иногда щелочами считают те гидроксиды, которые в водном растворе создают высокую концентрацию гидроксид-ионов. В устаревшей литературе вы можете встретить в числе щелочей карбонаты калия К2СО3 (поташ) и натрия Na2CO3 (сода), гидрокарбонат натрия NaHCO3 (питьевая сода), буру Na2B4O7, гидросульфиды натрия NaHS и калия KHS и др.
Гидроксид кальция Са(ОН)2 как сильный электролит диссоциирует в одну ступень:
3. Почти все соли. Соль, если это сильный электролит, диссоциирует в одну ступень, например хлорид железа:
В случае водных растворов к слабым электролитам ( 3+ ?
Осно’вные свойства гидроксидов одного и того же элемента усиливаются с уменьшением валентности элемента. Так, осно’вные свойства дигидроксида железа Fe(OH)2 выражены сильнее, чем у тригидроксида Fe(OH)3. Это утверждение равносильно тому, что кислотные свойства Fe(OH)3 проявляются сильнее, чем у Fe(OH)2.
4. Гидроксид аммония NH4OH.
При растворении газообразного аммиака NH3 в воде получается раствор, который очень слабо проводит электрический ток и имеет горько-мыльный вкус. Среда раствора осно’вная, или щелочная. Объясняется такое поведение аммиака следующим образом. При растворении аммиака в воде образуется гидрат аммиака NH3•Н2О, которому условно мы приписываем формулу несуществующего гидроксида аммония NH4OH, считая, что это соединение диссоциирует с образованием иона аммония и гидроксид-иона ОН – :
NH4OH = + ОН – .
5. Некоторые соли: хлорид цинка ZnCl2, тиоцианат железа Fe(NСS)3, цианид ртути Hg(CN)2 и др. Эти соли диссоциируют ступенчато.
К электролитам средней силы некоторые относят фосфорную кислоту Н3РО4. Мы будем считать фосфорную кислоту слабым электролитом и записывать три ступени ее диссоциации. Серная кислота в концентрированных растворах ведет себя как электролит средней силы, а в очень концентрированных растворах – как слабый электролит. Мы далее будем считать серную кислоту сильным электролитом и записывать уравнение ее диссоциации в одну ступень.
Видео:9 класс. Электролитическая диссоциация. Образование ионов.Скачать
Уравнения электролитической диссоциации фтороводородной кислоты
Известно, что существуют две основные причины прохождения электрического тока через проводники: либо за счёт движения электронов в электрическом поле, либо за счет движения ионов. Электрическая проводимость присуща, прежде всего, металлам. Ионная проводимость присуща многим химическим соединения, обладающим ионным строением, например, солям в твёрдом или расплавленном состояниях, а также многим водным и неводным растворам. В связи с этим все вещества принято условно делить на две категории:
а) вещества, растворы которых обладают ионной проводимостью, называются электролитами;
б) вещества, растворы которых не обладают ионной проводимостью, называются неэлектролитами.
К электролитам относится большинство неорганических кислот, оснований и солей. К неэлектролитам относятся многие органические соединения, например, спирты, углеводы.
Оказалось, что, кроме хорошей электропроводности, растворы электролитов обладают более низкими значениями давлениями пара растворителя и температуры плавления и более высокими температурами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих свойств, шведский ученый С. Аррениус в 1887 г. предложил теорию электролитической диссоциации.
Под электролитической диссоциацией понимается распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов — катионов и анионов под действием растворителя. Например, молекула уксусной кислоты может диссоциировать в водном растворе следующим образом:
Сущность теории электролитической диссоциации С. Аррениуса
1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы: положительные (катионы) и отрицательные (анионы).
2. Под действием электрического тока положительно заряженные ионы движутся к отрицательному полюсу источника тока — катоду, и поэтому называются катионами, а отрицательно заряженные ионы движутся к положительному полюсу источника тока — аноду, и поэтому называются анионами.
3. Электролитическая диссоциация — процесс обратимый для слабых электролитов, т. е. вместе с распадом молекул на ионы (диссоциация) идет процесс соединения ионов в молекулы (ассоциация).
Электролиты подразделяются в зависимости от степени диссоциации на сильные и слабые.
вещества, которые диссоциируют полностью и необратимо, т. е. в растворе присутствуют только гидратиро-ванные ионы. Относятся все соли, сильные кислоты `»HI»`, `»HCl»`, `»HBr»`, `»HNO»_3`, `»H»_2″SO»_4`, `»HMnO»_4`, `»HClO»_4`, `»HClO»_3`, щелочи `»NaOH»`, `»LiOH»`, `»KOH»`, `»RbOH»`, `»CsOH»`, `»Ca»(«OH»)_2`, `»Ba»(«OH»)_2`, `»Sr»(«OH»)_2`.
С точки зрения теории электролитической диссоциации, кислотой называется соединение, образующее при диссоциации в водном растворе только ионы `»H»^+`:
Если кислота является двухосновной, то диссоциация кислоты происходит ступенчато. Количество стадий определяется основностью кислоты:
Сила бескислородных кислот возрастает в ряду однотипных соединений при переходе вниз по подгруппе кислотообразующего элемента: `»HCl»-«HBr»-«HI»`. Бромоводородная кислота `»HBr»` и йодоводородная `»HI»` кислоты сильнее хлороводородной, что объясняется увеличением межъядерных расстояний в их молекулах.
Фтороводородная (плавиковая) кислота `»HF»` растворяет стекло, но это вовсе не говорит о её силе. В ряду бескислородных галогенсодержащих кислот она относится к кислотам средней силы ввиду низкой концентрации в растворе ионов водорода из-за способности молекул `»HF»` к объединению (ассоциации), благодаря сильным водородным связям, возникающим при взаимодействии ионов `»F»^-` с молекулами `»HF»` (водородные связи) с образованием ионов `»HF»_2^-`, `»H»_2″F»_3^-` и других боле сложных частиц. В результате концентрация ионов водорода в водном растворе фтороводородной кислоты оказывается сильно пониженной.
Сила однотипных кислородных кислот изменяется в противоположном направлении, например, йодная кислота `»HIO»_4` слабее хлорной кислоты `»HClO»_4`. Если элемент образует несколько кислородных кислот, то наибольшей силой обладает кислота, в которой кислотообразующий элемент имеет самую высокую валентность.
Так, в ряду кислот `»HClO»-«HClO»_2-«HClO»_3-«HClO»_4` хлорная кислота наиболее сильная.
Схематически процесс распада (диссоциации) соляной кислоты на ионы можно представить следующим образом. Чтобы вещество в воде было электролитом, его молекула должна быть полярной.
Полярная молекула вещества окружена полярными молекулами воды, которые разрывают молекулу на две противоположно заряженные частицы – ионы.
с точки зрения теории электролитической диссоциации, представляет собой вещество, способное отдавать в растворе гидроксильную группу `»OH»^-`:
Диссоциация многокислотного гидроксида происходит ступенчато, например:
В свете теории электролитической диссоциации соли представляют собой соединения, образующие в водном растворе положительно заряженные ионы металла и отрицательно заряженные ионы кислотного остатка (для средних солей), а также кроме них ионы водорода (для кислых солей) и гидроксид-ионы (для основных солей):
вещества, которые диссоциируют частично и обратимо.
В растворе слабого электролита присутствуют гидратированные ионы и некоторая часть недиссоциированных молекул.
К слабым электролитам относятся:
3) оставшиеся кислоты, не относящиеся к сильным, например, `»HF»`, `»H»_2″S»`, `»HNO»_2`, `»H»_3″PO»_4` и другие, а также незамещённые органические кислоты. При растворении углекислого газа в воде образуется его гидрат `»CO»_2*»H»_2″O»` и в незначительном количестве угольная кислота `»H»_2″CO»_3`. Тем не менее, для диссоциации воспользуемся формулой угольной кислоты:
Практически диссоциация осуществляется лишь по первой ступени. Образующийся гидрокарбонат-ион `»HCO»_3^-` ведёт себя как слабый электролит.
Причиной диссоциации электролита в водных растворах является его гидратация, т. е. взаимодействие электролита с молекулами воды и разрыв химической связи в нем. В результате такого взаимодействия образуются гидратированные, т. е. связанные с молекулами воды, ионы.
Диссоциации проходит благодаря тому, что при гидратации ионов выделяется больше энергии, чем требуется на разрыв связи в молекуле. Примерно также происходит растворение ионного кристалла в воде и образование ионов. У кристаллов энергия гидратации ионов выше энергии кристаллической решётки.
Следует учитывать, что в растворах электролитов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. При некоторой постоянной температуре в данной системе устанавливается химическое равновесие, при котором скорость диссоциации станет равной скорости ассоциации.
Также необходимо учитывать, что свойства гидратированных ионов отличаются от свойств негидратированных ионов. Например, негидратированный ион меди `»Cu»^(2+)` — белый в безводных кристаллах сульфата меди (II) `»СuSO»_4` и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами воды `»Cu»^(2+)*»H»_2″O»`. Гидратированные ионы имеют как постоянное, так и переменное количество молекул воды.
Основные свойства гидроксидов одного и того же элемента усиливаются с уменьшением его валентности. Так, основные свойства у гидроксида железа (II) выражены сильнее, чем у гидроксида железа (III) и наоборот.
Слабым электролитом является гидроксид аммония `»NH»_4″OH»`. При растворении аммиака `»NH»_3` в воде образуется раствор, который слабо проводит электрический ток и имеет горько-мыльный вкус. Среда раствора основная. В растворе образуются гидрат аммиака `»NH»_3*»H»_2″O»` и в незначительном количестве гидроксид аммония `»NH»_4″OH»`, который диссоциирует как слабый электролит с образованием ионов аммония `»NH»_4^+` и гидроксид-иона `»OH»^-`.
К слабым электролитам относят некоторые соли, например хлорид цинка `»ZnCl»_2`, тиоцианат железа `»Fe»(«NCS»)_3`, цианид ртути `»Hg»(«CN»)_2`, которые также диссоциируют по ступеням.
Разделение электролитов на сильные, средние и слабые зависит от доли продиссоциированных молекул или степени диссоциации `alpha`, которая показывает отношение числа молекул, распавшихся на ионы `(N_»д»)`, к общему числу введённых в раствор молекул `(N_»р»)`:
Электролиты со степенью диссоциации `30%` и более называют сильными, со степенью диссоциации `3`-`30%` называют средними (средней силы), со степенью диссоциации менее `3%` — слабыми.
Степень диссоциации не является строгим показателем силы электролита, т. к. она зависит от концентрации раствора, природы растворителя, присутствия в растворе другие электролитов.
При понижении концентрации степень диссоциации может повышаться, и в очень разбавленных растворах слабый электролит может находиться в состоянии почти полной диссоциации, в то же время в концентрированном растворе сильный электролит может вести себя как слабый и даже как неэлектролит.
Степень диссоциации как сильных, так и слабых электролитов зависит от концентрации раствора (степень диссоциации тем выше, чем более разбавлен раствор). Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.
Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:
Поскольку диссоциация слабого электролита является обратимым равновесным процессом, то к данной реакции применим закон действующих масс, и можно определить константу равновесия как
где `K_»дис»` — константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита;
`[AK]` – концентрация недиссоцированных молекул;
`[A^-]`, `[K^+]` — молярные концентрации анионов и катионов.
Рассчитайте количество ионов водорода в `1` л раствора серной кислоты с концентрацией `0,1` моль/л.
`0,1` моль `0,1` моль
Количество ионов водорода равно `0,1` моль.
Запишем уравнение диссоциации по второй ступени и по справочным данным определим степень диссоциации (`0,3`):
$$ <mathrm>_^rightleftarrows $$ | `»H»^+ +»SO»_4^(2-)`. |
`0,1` моль | `0,03` моль |
Используем формулу для нахождения степени диссоциации (при решении задачи степень диссоциации удобно выразить в долях от единицы):
`n(«диссоцH»_2″SO»_4)=0,1` моль/л `*0,3=0,03` моль.
Таким образом, в растворе появилось ионов `»H»^+` :
`0,1` моль `+ 0,03` моль `= 0,13` моль.
Следовательно, концентрация ионов водорода в растворе серной кислоты равна `0,13` моль/л.
Степень диссоциации гидроксида бария по первой ступени `- 92%`, по второй ступени `- 56%`. Рассчитайте число катионов бария и число гидроксид-ионов в `0,5` л `1,5 M` растворе.
1) Запишем уравнение электролитической диссоциации гидроксида бария:
1 ступень: `»Ba(OH»)_2-> «BaOH»^+ + «OH»^-`,
2) Найдём количество вещества гидроксида бария, содержащегося в данном образце раствора:
3) Зная степень диссоциации вычислим число молекул `»Ba(OH»)_2` распавшихся на ионы по первой ступени диссоциации:
Согласно диссоциации по `»I»` ступени, это количество вещества равно количеству вещества гидроксид-ионов, образовавшихся по первой ступени диссоциации, и количество ионов `»Ba(OH»)^+`:
4) Исходя из количества вещества гидроксокатионов бария, образовавшихся на первой стадии диссоциации, и степени диссоциации по второй ступени, вычислим количество ионов `»Ba»(«OH»)^+`, диссоциирующих по второй ступени:
В соответствии с диссоциацией по `»II»` ступени, это количество вещества равно количеству вещества катионов `»Ba»^(2+)` и количеству ионов `»OH»^-`, образовавшихся по `»II»` ступени диссоциации:
5) Найдём число катионов `»Ba»^(2+)`, образующихся при диссоциации:
6) Вычислим количество вещества гидроксид-ионов, образовавшихся на обеих стадиях диссоциации, и их число:
📸 Видео
Задание 13. Диссоциация, как писать уравнения диссоциации? | Химия ОГЭ | УмскулСкачать
Электролитическая диссоциация | Химия ЕГЭ, ЦТСкачать
Основные положения теории электролитической диссоциации. Свойства ионов. 9 класс.Скачать
Электролитическая диссоциация. Видеоурок по химии 9 классСкачать
Электролитическая диссоциацияСкачать
Диссоциация кислот.Скачать
Задание №13. Диссоциация | Химия ОГЭ 2023 | УмскулСкачать