Уравнения электродных процессов с угольным анодом

Видео:Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Please wait.

Видео:Гальванические элементы. 1 часть. 10 класс.Скачать

Гальванические элементы. 1 часть. 10 класс.

We are checking your browser. gomolog.ru

Видео:Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | УмскулСкачать

Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | Умскул

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:ЭлектролизСкачать

Электролиз

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e2978a53809fadc • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Видео:Электролиз растворов. 1 часть. 10 класс.Скачать

Электролиз растворов. 1 часть. 10 класс.

Уравнения электродных процессов, протекающих при электролизе водных растворов солей

Задача 688.
Написать уравнения электродных процессов, протекающих при электролизе водных растворов ВаСI2 и РbNO3)2 с угольными электродами.
Решение:
а) электролиз водного раствора ВаСI2

ВаСI2 – соль активного металла и кислородной кислоты. Стандартный электродный потенциал системы: Ba 2+ = 2 Уравнения электродных процессов с угольным анодомBa(-2,90 В) значительно отрицательнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением газообразного водорода:

2H2O + 2 Уравнения электродных процессов с угольным анодом⇔ H2↑ + 2ОH —

На аноде будет происходить электрохимическое окисление хлора, стандартный потеннциал которого (+1,36 В) выше, чем воды (+1,23 В). Хлор будет окисляться, потому что наблюдается значительное перенапряжение процесса окисления воды, материал анода оказывает тормозящее воздействие на его протекание:

2Cl — — 2 Уравнения электродных процессов с угольным анодом= 2Cl*
Cl* + Cl* = Cl2

Сложив уравнения катодного и анодного процессов, получим суммарное уравнение:

Таким образом, при электролизе водного раствора хлорида бария одновременно с выделением газообразного водорода (катод) и газообразного хлора (анод), образуется гидроксид бария (катодное пространство).

б) электролиз водного раствора Рb(NO3)2

Рb(NO3)2 – соль средней активности металла и кислородной кислоты, которая в водном растворе диссоциирует по схеме:

Стандартный электродный потенциал электрохимической системы Pb 2+ /Pb (-0,13В) положительнее потенциала водородного электрода в нейтральной среде (-0,41 В) незначительно. Поэтому на катоде будет выделяться свинец Уравнения электродных процессов с угольным анодом0 (2H + /H2) > Уравнения электродных процессов с угольным анодом0 (Pb 2+ /Pb):

Pb2+ + 2 Уравнения электродных процессов с угольным анодом⇔ Pb 0

На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода:

2H2O — 4 Уравнения электродных процессов с угольным анодом= O2↑ + 4H +

Ионы NO3 -, движущиеся при гидролизе к аноду, будут накапливаться в анодном пространстве. Умножим уравнение катодного процесса на два и сложим его с уравнением анодного процесса, получим суммарное уравнение:

2Pb 2+ + 2H2O = 2Pb + O2↑ + 4H +
у катода у анода

Приняв во внимание, что одновременно происходит накопление ионов NO3 — в анодном пространстве, суммарное уравнение процесса можно записать в следующей форме:

Таким образом, при электролизе водного раствора соли нитрата свинца одновременно с выделением свинца (катод) и газообразного кислорода (анод), образуется азотная кислота (анодное пространство).

Задача 689.
Написать уравнения электродных процессов, протекающих при электролизе водных растворов FeCl3 и Са(NO3)2 с инертным анодом.
Решение:
а) Электролиз водного раствора FeCl3

В водном растворе соль FeCl3 диссоциирует по схеме: FeCl3 ⇔ Fe 3+ + 3Cl — . Стандартный электродный потенциал системы Fe 3+ + 3 Уравнения электродных процессов с угольным анодом= Fe 0 (-0,04 В) положительнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление ионов Fe3+:

Fe 3+ + 3 Уравнения электродных процессов с угольным анодом= Fe 0

На аноде будет происходить электролитическое окисление ионов хлора с образованием свободных атомов хлора, которые, соединяясь друг с другом, образуют молекулу хлора:

2Cl — — 2 Уравнения электродных процессов с угольным анодом= 2Cl*
Cl* + Cl* = Cl2

Сложим, предварительно умножив уравнение катодного процесса на два и на три уравнения анодного процессов, получим суммарное уравнение:

2Fe 3+ + 6Cl — = 2Fe + 3Cl2

При электролизе FeCl3 в водном растворе с инертными электродами образуются металлическое железо, и выделяется газообразный хлор.

б) Электролиз водного раствора Са(NO3)2

Са(NO3)2 в водном растворе диссоциирует по схеме:

Стандартный электродный потенциал системы Ca 2+ + 2 Уравнения электродных процессов с угольным анодом= Ca (-2,87 В) значительно отрицательнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением газообразного водорода:

2H2O + 2 Уравнения электродных процессов с угольным анодом⇔ H2↑ + 2ОH — ,

а ионы кальция Са 2+ , приходящие к катоду, будут накапливаться в прилегающей к нему части раствора (катодное пространство). На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода:

2H2O — 4 Уравнения электродных процессов с угольным анодом⇔ O2↑ + 4ОH —

Иионы NO3 — на аноде разряжаться не будут, а будут накапливаться в анодном пространстве.

Умножив уравнение катодного процесса на два, и сложив, его с уравнением анодного процесса получим суммарное уравнение электролиза:

Приняв во внимание, что одновременно происходить накопление ионов кальция в катодном пространстве и нитрат-ионов в анодном пространстве, суммарное уравнение процесса можно записать в следующей форме:

Молекулярная реакция после приведения членов, получим:

Таким образом, при электролизе раствора соли нитрата кальция одновременно с выделением водорода и кислорода образуется гидроксид кальция (в катодном пространстве) и азотная кислота (в анодном пространстве).

Видео:Электролиз расплавов и растворов солей.Теория для задания 22 ЕГЭ по химииСкачать

Электролиз расплавов и растворов солей.Теория для задания 22 ЕГЭ по химии

Электролиз

Видео:Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.Скачать

Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Уравнения электродных процессов с угольным анодом

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Видео:Электролиз. Часть 1. Процесс электролиза, основные закономерности.Скачать

Электролиз. Часть 1. Процесс электролиза, основные закономерности.

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Уравнения электродных процессов с угольным анодом

Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

2 H + 2O +2ē → H2 0 + 2OH —

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2 O -2 – 4ē → O2 0 + 4H +

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2 H2 + O -2 → 2 H2 0 + O2 0

Видео:Электрохимическая коррозия (алюминий — медь)Скачать

Электрохимическая коррозия (алюминий — медь)

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl → 2 Na 0 + Cl2 0

Уравнения электродных процессов с угольным анодом

Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0

Уравнения электродных процессов с угольным анодом

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Видео:Уравнение Нернста. Задачи на расчет потенциалов. Продукты в ОВР. Ч.5-2.Скачать

Уравнение Нернста. Задачи на расчет потенциалов. Продукты в ОВР. Ч.5-2.

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+

🎥 Видео

90. Электролиз (часть 1)Скачать

90. Электролиз (часть 1)

Часть 3-2. Электролиз водных растворов. Примеры решений уравнений (подробно).Скачать

Часть 3-2. Электролиз водных растворов. Примеры решений уравнений (подробно).

Химия / 9 класс / ЭлектролизСкачать

Химия / 9 класс / Электролиз

91. Электролиз. Задачи (часть 2)Скачать

91. Электролиз. Задачи (часть 2)

7. ЭлектролизСкачать

7. Электролиз

Электролиз раствора соли сульфата цинка с нейтральными (угольными) электродамиСкачать

Электролиз раствора соли сульфата цинка с нейтральными (угольными) электродами

Электролиз. Часть 2. Уравнения электролиза расплавов и растворов.Скачать

Электролиз. Часть 2. Уравнения электролиза расплавов и растворов.

Электродные потенциалы металлов. Электроды сравненияСкачать

Электродные потенциалы металлов. Электроды сравнения

Электролиз раствора соли сульфата цинка с цинковым анодомСкачать

Электролиз раствора соли сульфата цинка с цинковым анодом

Электрохимия. Гальванический элемент Даниэля-ЯкобиСкачать

Электрохимия. Гальванический элемент Даниэля-Якоби
Поделиться или сохранить к себе: