Уравнения электродных процессов происходящих при нарушении покрытия

Please wait.

Видео:Гальванические элементы. 1 часть. 10 класс.Скачать

Гальванические элементы. 1 часть. 10 класс.

We are checking your browser. gomolog.ru

Видео:Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:Электрохимическая коррозияСкачать

Электрохимическая коррозия

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e2b1a187b390115 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Видео:Коррозия металла. Химия – ПростоСкачать

Коррозия металла. Химия – Просто

И электродные реакции для некоторых металлов

ЭлектродЭлектродная реакцияj o , ВЭлектродЭлектродная реакцияj o , В
Li + /LiLi + + ē = Li–3,045Cd 2+ /CdCd 2+ + 2ē = Cd–0,403
Rb + /RbRb + + ē = Rb–2,925Co 2+ /CoCo 2+ + 2ē = Co–0,277
K + /KK + + ē = K–2,924Ni 2+ /NiNi 2+ + 2ē = Ni–0,250
Cs + /CsCs + + ē = Cs–2,923Sn 2+ /SnSn 2+ + 2ē = Sn–0,136
Ba 2+ /BaBa 2+ + 2ē = Ba–2,906Pb 2+ /PbPb 2+ + 2ē = Pb–0,126
Ca 2+ /CaCa 2+ + 2ē = Ca–2,866Fe 3+ /FeFe 3+ + 3ē = Fe–0,036
Na + /NaNa + + ē = Na–2,7142H + /H22H + + 2ē = H20,000
Mg 2+ /MgMg 2+ + 2ē = Mg–2,363Bi 3+ /BiBi 3+ + 3ē = Bi+0,215
A1 3+ /A1Al 3+ + 3ē = Al–1,662Cu 2+ /CuCu 2+ + 2ē = Cu+0,337
Ti 2+ /TiTi 2+ + 2ē = Ti–1,628Ag + /AgAg + + ē = Ag+0,799
Mn 2+ /MnMn 2+ + 2ē = Mn–1,180Hg 2+ /HgHg 2+ + 2ē = Hg+0,854
Zn 2+ /ZnZn 2+ + 2ē = Zn–0,763Pt 2+ /PtPt 2+ + 2ē = Pt+1,190
Cr 3+ /CrCr 3+ + 3ē = Cr–0,744Au 3+ /AuAu 3+ + 3ē = Au+1,498
Fe 2+ /FeFe 2+ + 2ē = Fe–0,440Au + /AuAu + + ē = Au+1,691

Расположенные в порядке увеличения стандартного электродного потенциала металлы образуют ряд напряжений металлов. Положение металла в ряду напряжений определяет относительную окислительно-восстановительную способность металла и его ионов. Чем меньшее значение имеет стандартный электродный потенциал металла, тем более сильным восстановителем он является. Чем больше потенциал металлического электрода, тем более высокой окислительной способностью обладают его ионы. Каждый металл способен вытеснять из растворов солей только те металлы, которые имеют большее значение электродного потенциала – более активный металл замещает менее активный.

Последовательность металлов в ряду напряжений сохраняется только для стандартной температуры (25 °С) и концентрации ионов металла в растворе 1моль/л. При других концентрациях электролита электродный потенциал рассчитывается по уравнению Нернста:

j = j 0 + Уравнения электродных процессов происходящих при нарушении покрытияlg C,

где j 0 − стандартный электродный потенциал, n – число электронов, участвующих в электродной реакции; C – концентрация ионов металла в растворе (моль/л).

Если два электрода, погруженные в растворы электролитов, соединить металлическим проводником, образуется гальванический элемент. Гальваническими элементаминазывают устройства, в которых химическая энергия окислительно-восстановительных процессов преобразуется в электрическую энергию.

Так, реакция CuSO4 + Zn = Cu + ZnSO4 в электрохимическом варианте является основой гальванического элемента Даниэля – Якоби, схема которого (–) Zn | ZnSO4 || CuSO4 |Cu (+) отражает систему обозначений для гальванических элементов. Слева записывается анод Zn | Zn 2+ – электрод, имеющий меньшее значение электродного потенциала, отрицательный полюс (–), на нем протекает процесс окисления – анодная реакция: Zn –2ē = Zn 2+ . Справа – катод Cu 2+ | Cu – электрод, имеющий большее значение электродного потенциала, положительный полюс (+), на нем протекает процесс восстановления – катодная реакция: Cu 2+ + 2ē = Cu. Одна вертикальная черта изображает фазовый раздел между металлом и раствором электролита. Двойная вертикальная линия отделяет анодное пространство от катодного.

Суммарная реакция, протекающая в гальваническом элементе, называется токообразующей. В случае элемента Даниэля – Якоби токообразующая реакция имеет вид Cu 2+ + Zn = Cu + Zn 2+ .

Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой(ЭДС). Обозначается E, измеряется в вольтах. ЭДС элемента равна разности потенциалов катода и анода: E = j к – j а

Стандартная ЭДС равна разности стандартных электродных потенциалов катода и анода:E 0 = j 0 к– j 0 а Так, для элемента Даниэля – Якоби стандартная ЭДС равна: E 0 = j 0 Сu 2+ /Cu – j 0 Zn 2+ /Zn = +0,337 – (–0,763) = +1,100 В.

Окислительно-восстановительная реакция, характеризующая работу гальванического элемента, протекает в направлении, в котором ЭДС имеет положительное значение. В этом случае DG 0 х.р. 0 = – nE 0 F,

где n – число электронов, участвующих в электродной реакции; F – постоянная Фарадея, равная 96500 Кл; E 0 – стандартная ЭДС.

Гальванический элемент, состоящий из двух электродов одного и того же металла, погруженных в растворы его соли разной концентрации, представляет собой концентрационный элемент. В этом случае электрод, погруженный в раствор электролита с меньшей концентрацией ионов металла, будет анодом. В качестве катода будет выступать электрод, опущенный в электролит с большей концентрацией ионов металла.

Пример 12.1.Определить ЭДС концентрационного серебряного элемента с концентрациями ионов серебра, равными 10 –1 моль/л у одного электрода и

10 –4 моль/л у другого при 298 К.

Решение.Схема такого гальванического элемента Ag½Ag + ||Ag + ½Ag. По уравнению Нернста рассчитываем потенциалы двух серебряных электродов.

Для первого электрода:

j Ag + /Ag = j 0 Ag + /Ag + 0,059 lg10 -1 = 0,799 + 0,059×(–1) = 0,74 В

Для второго электрода:

j Ag + /Ag = j 0 Ag + /Ag + 0,059 lg10 -4 = 0,799 + 0,059×(–4) = 0,563 В

Первый электрод с большим значением потенциала в данном элементе является катодом, второй – анодом. ЭДС рассчитываем по формуле:

E = j к – j а = 0,74 – 0,563 = 0,177 В.

Пример 12.2. Рассчитать ЭДС элемента Cd½Cd 2+ || Ni 2+ ½Ni при концентрации ионов Cd 2+ и Ni 2+ , равных соответственно 0,1 и 0,001 моль/л.

Решение.Используя уравнения Нернста и данные таблицы стандартных электродных потенциалов, рассчитываем электродные потенциалы кадмия и никеля:

j Сd 2+ /Cd = j 0 Сd 2+ /Cd + Уравнения электродных процессов происходящих при нарушении покрытияlg10 -3 = -0,403 + 0,0295×(-3) = -0,4915 В

j Ni 2+ /Ni = j 0 Ni 2+ /Ni + Уравнения электродных процессов происходящих при нарушении покрытияlg10 -1 = -0,250 + 0,0295×(-1) = — 0,2795 В

Так как j Сd 2+ /Cd 2+ /Ni , то токообразующей в этом гальваническом элементе является реакция Cd 0 + Ni 2+ = Cd 2+ + Ni 0 . Рассчитываем ЭДС элемента E = j Ni 2+ /Ni – j Сd 2+ /Cd = -0,2795 — (-0,4915) = 0,212 В.

Пример 12.3. Исходя из значений стандартных электродных потенциалов и DG 0 х.р., указать, можно ли в гальваническом элементе осуществить реакцию Pb 2+ + Ti = Pb + Ti 2+ . Составить схему гальванического элемента, написать уравнения электродных реакций.

Решение. В соответствии с уравнением реакции схему гальванического элемента можно представить следующим образом: (–) Ti½Ti 2+ || Pb 2+ ½Pb (+). Уравнения электродных реакций имеют вид:

на аноде: Ti 0 – 2ē ® Ti 2+

на катоде: Pb 2+ + 2ē ® Pb 0

Рассчитываем стандартное значение ЭДС:

Энергию Гиббса рассчитываем по уравнению DG 0 = –nE 0 F=

–2×1,502×96500 = –289,9 кДж. Так как DG 0 2+ + Zn = Cu + Zn 2+

Один моль эквивалентов цинка (32,69 г/моль) будет замещаться на один моль эквивалентов меди (31,77 г/моль) или свинца (103,6 г/моль). Учитывая молярные массы эквивалентов этих элементов, в растворе CuSO4 масса цинковой пластины будет незначительно уменьшаться, а в растворе Pb(NO3)2 – заметно увеличиваться.

Стандартный потенциал магния имеет меньшее значение, чем потенциал цинка. Это означает, что ионы магния не могут окислять цинковую пластинку. Поведение цинка в таком растворе аналогично окислению цинковой пластинки в воде: Zn – 2ē = Zn 2+ . Протекание такого процесса приведет к малозаметному снижению массы цинковой пластинки.

Пример 12.5.Как происходит коррозия цинка, находящегося в контакте с кадмием, во влажном воздухе и в кислом растворе (НСl)? Составить уравнения анодного и катодного процессов. Привести схемы образующихся при этом гальванических элементов. Определить состав продуктов коррозии.

Решение.Цинк имеет меньшее значение потенциала (–0,763 В), чем кадмий (–0,403 В), поэтому он является анодом, а кадмий – катодом. Следовательно, цинк растворяется, а на поверхности кадмия идет восстановление: в кислом растворе – ионов водорода, во влажном воздухе – растворенного в воде кислорода.

Анодный процесс: Zn – 2ē = Zn 2+

Катодный процесс: в кислом растворе 2Н + + 2ē ® Н2

во влажном воздухе О2 + 2Н2О + 4ē ® 4ОН –

Схема образующегося гальванического элемента во влажном воздухе:

Схема образующегося гальванического элемента в кислом растворе:

Во влажном воздухе ионы Zn 2+ с гидроксильными группами, выделяющимися на катоде, образуют малорастворимый гидроксид цинка Zn(ОН)2, который и является продуктом коррозии.

В кислой среде на поверхности кадмия выделяется газообразный водород. В раствор переходят ионы Zn 2+ .

Пример 12.6. Хром находится в контакте с медью. Какой из металлов будет окисляться при коррозии, если эта пара металлов попадает в кислую среду (НС1)? Привести уравнения анодного и катодного процессов, схему образующегося гальванического элемента. Каков состав продуктов коррозии?

Решение.По положению в ряду напряжений металлов видно, что хром более активный металл (j 0 Сr 3+ /Cr = –0,744 В), чем медь (j 0 Сu 2+ /Cu = 0,337 В). В образованной гальванической паре Cr – анод, он окисляется, а Cu – катод, на ее поверхности выделяется (восстанавливается) водород из НС1.

Анодный процесс: Cr –3ē = Cr 3+

Катодный процесс в кислой среде: 2Н + + 2ē ® Н2

Схема гальванического элемента: (–) Cr½HCl½Cu (+)

Появляющиеся ионы Cr 3+ образуют с хлорид-анионами (из НС1) растворимое соединение – CrC13, на поверхности меди выделяется Н2.

Задачи

№ 12.1. а) Чему равна величина ЭДС гальванического элемента, составленного из стандартных цинкового и серебряного электродов, погруженных в растворы их солей? Привести схему гальванического элемента и реакции, протекающие на электродах при его работе. (Ответ: 1,562 В).

б) Возможна ли электрохимическая коррозия алюминия, контактирующего со свинцом в нейтральном водном растворе, содержащем растворенный кислород? Если да, то написать уравнения реакций анодного и катодного процессов. Составить схему образующегося гальванического элемента.

№ 12.2. а) Чему равна величина ЭДС цинкового концентрационного элемента, составленного из двух цинковых электродов, опущенных в растворы с концентрациями ионов Zn 2+ , равными 10 –2 и 10 –6 моль/л? Привести схему такого элемента и реакции, протекающие на электродах при его работе.

б) Как происходит атмосферная коррозия луженого и оцинкованного железа при нарушении покрытия? Составить уравнения анодного и катодного процессов. Привести схемы образующихся гальванических элементов.

№ 12.3. а) Имеется гальванический элемент, в котором протекает токообразующая реакция Ni + Cu 2+ = Cu + Ni 2+ . Привести схему такого элемента, написать уравнения электродных процессов.

б) Изделие из алюминия склепано с медью. Какой из металлов будет подвергаться коррозии, если эти металлы попадут в кислую среду (НСl)? Составить уравнения происходящих при этом процессов, привести схему образующегося гальванического элемента. Определить продукты коррозии.

№ 12.4. а) Составить схему, написать уравнения токообразующей и электродных реакций для гальванического элемента, у которого один из электродов кобальтовый (СCо 2+ = 10 –1 моль/л), а другой – стандартный водородный. Рассчитать ЭДС элемента при 298 К. Как изменится ЭДС, если концентрация ионов Со 2+ уменьшить в 10 раз? (Ответ: 0,307 В; 0,336 В).

б) Составить уравнения анодного и катодного процессов при коррозии пары магний – свинец в кислой среде и во влажном воздухе. Какие продукты коррозии образуются в первом и во втором случаях?

№ 12.5. а)Каково значение ЭДС элемента, состоящего из медного и свинцового электродов, погруженных в растворы солей этих металлов с концентрациями их ионов 1 моль/л? Изменится или нет ЭДС этого элемента и почему, если концентрации ионов металлов будут составлять 0.001 моль/л? Составить уравнения электродных и токообразующей реакций. Привести схему гальванического элемента. (Ответ: 0,463 В).

б) Привести по одному примеру катодного и анодного покрытия для кобальта. Составить уравнения катодных и анодных процессов во влажном воздухе и в растворе соляной кислоты при нарушении целостности покрытия.

№ 12.6. а) Составить схему, привести уравнения электродных процессов и вычислить ЭДС концентрационного гальванического элемента, состоящего из медных электродов, опущенных в растворы СuSO4 с концентрациями 0,01 и 0,1 моль/л. (Ответ: 0,0295 В).

б)К какому типу покрытий относятся олово на меди и на железе? Какие процессы будут протекать при атмосферной коррозии указанных пар в нейтральной среде? Написатьуравнения катодных и анодных реакций.

№ 12.7. а)После нахождения в растворах каких из приведенных солей масса кадмиевой пластинки увеличится или уменьшится: а) MgCl2; б) Hg(NO3)2;

в) CuSO4; г) AgNO3; д) CaCl2? Ответ обосновать

б) Медное изделие покрыли серебром. К какому типу относится такое покрытие – к анодному или катодному? Составить уравнения электродных процессов коррозии этого изделия при нарушении целостности покрытия во влажном воздухе и в растворе соляной кислоты. Привести схемы образующихся при этом гальванических элементов.

№ 12.8. а) Составить схему, привести уравнения электродных процессов и вычислить ЭДС гальванического элемента, состоящего из свинцовой и магниевой пластин, которые опущены в растворы своих солей с концентрацией ионов Pb 2+ и Mg 2+ , равных 1 моль/л. Изменится ли значение ЭДС, если концентрацию каждого из ионов понизить в 100 раз? Ответ обосновать. (Ответ: 2,237 В).

б) В воду, содержащую растворенный кислород, опустили никелевую пластинку и никелевую пластинку, частично покрытую медью. В каком случае процесс коррозии никеля происходит интенсивнее? Почему? Составить уравнения анодного и катодного процессов для пластинки покрытой медью.

№ 12.9. а)В два сосуда с голубым раствором сульфата меди поместили в первый хромовую пластинку, а во второй платиновую. В каком сосуде цвет раствора постепенно исчезает? Почему? Составить электронные и молекулярные уравнения соответствующих реакций.

б) Какой металл целесообразнее выбрать для протекторной защиты железного изделия: цинк, никель или кобальт? Почему? Составить уравнения анодного и катодного процессов атмосферной коррозии таких изделий. Каков состав продуктов коррозии?

№ 12.10. а) Составить схемы двух гальванических элементов, в одном из которых оловянная пластинка была бы катодом, а в другом анодом. Написать для каждого из этих элементов уравнения электродных (катодных и анодных) процессов и токообразующих реакций.

б) Железо покрыто хромом. Какой из металлов будет корродировать в случае нарушения поверхностного слоя покрытия при атмосферной коррозии? Какое это покрытие катодное или анодное? Составить схему процессов, происходящих на электродах образующегося гальванического элемента.

№ 12.11. а) Составить схему гальванического элемента, в основе работы которого лежит реакция: Ni + Pb(NO3)2 = Ni(NO3)2 + Pb. Написать уравнения электродных (катодных и анодных) процессов. Вычислить ЭДС этого элемента, если СNi 2+ = 0,01 моль/л, а СPb 2+ = 0,0001 моль/л. (Ответ: 0,065 В).

б) Рассчитать энергию Гиббса реакции

и определить, какой из металлов – магний или медь, интенсивнее будет корродировать во влажном воздухе. Стандартные энергии Гиббса образования D¦G 0 Mg(OH)2, Cu(OH)2, H2O (ж) соответственно равны –833,7; –356,9; –237,3 кДж/моль.

№ 12.12. а) Вычислить электродный потенциал цинка в растворе ZnCl2, в котором концентрация Zn 2+ составляет 0,1 моль/л. Как изменится значение потенциала при разбавлении раствора в 100 раз? (Ответ: –0,79 В; –0,85 В).

б) Какой из металлов – алюминий или золото, будет подвергаться коррозии во влажном воздухе по уравнению: 4Ме + 6Н2О (ж) + 3О2 = 4Ме(ОН)3.

Ответ обосновать, рассчитав энергию Гиббса реакции. Стандартные энергии Гиббса образования D¦G 0 Al(OH)3, Au(OH)3, H2O (ж) соответственно равны

–1139,7; –289,9; –237,3 кДж/моль.

№ 12.13. а) Составить схему гальванического элемента, электродами в котором служат пластинки из олова и меди. Исходя из величин стандартных электродных потенциалов, рассчитать значения Е 0 и DG 0 . Определить направление протекания токообразующей реакции. (Ответ: 0,473 В; –91,3 кДж).

б)Какие из перечисленных металлов могут быть использованы для протекторной защиты железного изделия в присутствии электролита, содержащего растворенный кислород в нейтральной среде: алюминий, хром, серебро, кадмий? Привести уравнения анодного и катодного процессов атмосферной коррозии таких изделий. Каков состав продуктов коррозии?

№ 12.14. а) Составить схему гальванического элемента, образованного железом и свинцом, погруженными в растворы их солей с концентрациями ионов металлов 0,01 моль/л. Рассчитать ЭДС. (Ответ: 0,314 В).

б) Изделие из хрома спаяно свинцом. Какой из металлов будет корродировать при попадании такого изделия в кислотную среду (НСl)? Привести уравнения анодного и катодного процессов и образующиеся продукты коррозии.

№ 12.15. а) Исходя из величин стандартных электродных потенциалов, рассчитать значения ЭДС и DG 0 и определить, будет ли работать гальванический элемент, в котором на электродах протекают реакции:

(Ответ: –0,98 В; +189,1 кДж).

б) Составить уравнения анодного и катодного процессов, происходящих при коррозии железа, покрытого серебром, во влажном воздухе и в кислой среде. Определить тип покрытия – анодное или катодное? Какие продукты образуются в результате коррозии?

№ 12.16. а) Исходя из величин стандартных электродных потенциалов, рассчитать значения ЭДС и DG 0 и сделать вывод о возможности протекания реакции в прямом направлении: Cu + 2Ag + Уравнения электродных процессов происходящих при нарушении покрытияCu 2+ + 2Ag.

(Ответ: 0,462 В; –89,2 кДж).

б) Какие металлы могут быть использованы в качестве анодного покрытия сплава Zn – Cd? Привести уравнения анодного и катодного процессов при коррозии такого сплава во влажном воздухе в отсутствие анодного покрытия.

№ 12.17. а) Как изменится масса хромовой пластинки после нахождения в растворах солей: а) CuSO4; б) MgCl2; в) AgNO3; г) CaCl2? Ответ обосновать.

б) Привести уравнения анодного и катодного процессов при коррозии сплава Fe – Sn во влажном воздухе и в кислой среде. Определить продукты коррозии.

№ 12.18. а) Составить схемы двух гальванических элементов, в одном из которых цинк – отрицательный электрод, а в другом – положительный. Привести уравнения токообразующих реакций и электродных процессов.

б) Привести уравнения анодного и катодного процессов, происходящих при коррозии сплава Al – Ni в атмосфере влажного воздуха и в кислой среде (НС1). Определить продукты коррозии.

№ 12.19. а) Электродные потенциалы железа и серебра соответственно равны –0,44 и +0,799 В. Какая реакция самопроизвольно протекает в железо-серебряном гальваническом элементе?

Fe 0 + 2Ag + = Fe 2+ + 2Ag 0 или 2Ag 0 + Fe 2+ = Fe 0 + 2Ag +

Ответ обосновать, рассчитав энергию Гиббса каждой из приведенных реакций.

б) Хромовую пластинку и пластинку из хрома, частично покрытую серебром, поместили в раствор соляной кислоты. В каком случае процесс коррозии хрома протекает более интенсивно? Почему? Привести уравнения соответствующих процессов.

№ 12.20. а) Вычислить ЭДС гальванического элемента, состоящего из водородного электрода, опущенного в чистую воду, и оловянного электрода, опущенного в раствор с концентрацией ионов олова (II) 1 моль/л. (Ответ: 0,16 В).

б) Составить уравнения самопроизвольно протекающих реакций при атмосферной коррозии цинка и олова, находящихся в контакте. Привести схему образующегося гальванического элемента.

Видео:Химическая коррозияСкачать

Химическая коррозия

Тема 8. Коррозия металлов и способы защиты от неё

Литература: [1] c. 310-336; [2] с. 554-560

Теоретические основы

Коррозией называется самопроизвольное разрушением металлов и сплавов под действием окружающей среды. Характер и скорость коррозии определяется природой металла, составом среды, а также наличием примесей в металле и структурой его поверхности. В зависимости от природы среды, в которой находится металл, коррозию условно делят на два вида — химическую и электрохимическую.

Химическая коррозия протекает в среде неэлектролита, т.е. в сухих газах и парах при высокой температуре, когда невозможна конденсация влаги на поверхности металла (газовая коррозия), или в жидком неэлектролите (например, нефтепродукты, в которых присутствуют хлор- или серосодержащие вещества).

Электрохимическая коррозия происходит в средах, проводящих электрический ток — в растворах электролитов, во влажной атмосфере, в почве и т.п. Согласно теории микрогальванических элементов электрохимическая коррозия объясняется тем, что на отдельных участках металлической поверхности возникают разные по величине электродные потенциалы. Причиной этого является неоднородность поверхности: металлические и неметаллические примеси, оксидные и солевые плёнки, загрязнения, контакт разных металлов и т.д.

При контакте двух разных металлов или при наличии металлической примеси катодом является менее активный металл, у которого больше электродный потенциал. Более активный металл, поляризуясь анодно, окисляется и подвергается разрушению:

Ме о — n Уравнения электродных процессов происходящих при нарушении покрытия= Me n + .

Катодный процесс при электрохимической коррозии, называемый деполяризацией, представляет собой восстановление окислителя, содержащегося в электролите.

В кислой среде это преимущественно катионы водорода:

2Не + + 2 Уравнения электродных процессов происходящих при нарушении покрытия= Н2 (водородная деполяризация).

В нейтральной и щелочной среде идёт восстановление растворённого кислорода:

О2 + 2Н2О + 4 Уравнения электродных процессов происходящих при нарушении покрытия= 4ОН — (кислородная деполяризация).

Пример.Написать уравнения процессов, происходящих при коррозии железа, содержащего примеси меди, в разбавленной соляной кислоте.

Уравнения электродных процессов происходящих при нарушении покрытия Уравнения электродных процессов происходящих при нарушении покрытияОтвет. В местах контакта железа с включениями меди в растворе соляной кислоты образуются микрогальванические элементы, которые можно представить схемой:

(-)Fe HCl Cu(+). Исходя из положения металлов в ряду напряжений, заключаем, что железо более активно (j о Fe = — 0.44 В) и в образующейся гальванопаре является анодом, а менее активная медь (j о Cu = + 0.34 В)катодом. Поэтому железо окисляется, а на катоде происходит восстановление ионов водорода:

А: Fе о — 2 Уравнения электродных процессов происходящих при нарушении покрытия= Fe 2+

K(Cu): 2Не + + 2 Уравнения электродных процессов происходящих при нарушении покрытия= Н2­

Суммарное уравнение: Fe + 2HCl ¾® FeCl2 + H2­. Коррозии подвергается железо.

Для предупреждения коррозии и защиты от неё используются разнообразные методы: электрохимическая защита, применение химически стойких сплавов, обработка коррозионной среды, металлические и неметаллические покрытия, обработка поверхности металла. Материалами для металлических защитных покрытий могут быть как чистые металлы (Zn, Cd, Al, Ni, Cu, Cr, Ag и др.), так и их сплавы (бронза, латунь и др.). По характеру поведения металлических покрытий при коррозии их подразделяют на катодные и анодные.

Катодными называются покрытия, в которых металл покрытия менее активен, т.е. имеет более положительное значение стандартного электродного потенциала, чем защищаемый металл. Катодные покрытия на стали образуют медь, никель, олово и др. В случае механического повреждения такого покрытия возникает гальваническая пара, в которой анодом является железо, а катодом — металл покрытия. Например, коррозия лужёного (покрытого оловом) железа при нарушении целостности покрытия во влажном воздухе описывается следующими уравнениями электродных процессов:

А: Fе о — 2 Уравнения электродных процессов происходящих при нарушении покрытия= Fe 2+

K(Sn): О2 + 2Н2О + 4 Уравнения электродных процессов происходящих при нарушении покрытия= 4ОН —

Суммарное уравнение: 2Fe + 2Н2О + О2 ® 2Fe(OH)2

Т.о., железо окисляется и разрушается.

Анодные покрытия образуют металлы, обладающие более отрицательными электродными потенциалами, чем защищаемый металл, например покрытие железа цинком. При механическом повреждении цинкового покрытия возникает гальваническая пара, в которой железо служит катодом, а цинк — анодом, т.е. цинк окисляется, а железо остаётся защищённым до тех пор, пока не разрушится весь материал покрытия.

Уравнения электродных процессов, происходящих при коррозии оцинкованного железа во влажном воздухе, имеют вид:

А: Zn о — 2 Уравнения электродных процессов происходящих при нарушении покрытия= Zn 2+

K(Fe):О2 + 2Н2О + 4 Уравнения электродных процессов происходящих при нарушении покрытия= 4ОН —

Суммарное уравнение: 2Zn + 2Н2О + О2 ® 2Zn(OH)2

Задачи 121 — 140

141. Кобальт и медь находятся в контакте в соляной кислоте. Напишите уравнения катодного и анодного процессов и состав продуктов коррозии.

142. Составьте электронные уравнения анодного и катодного процессов атмосферной коррозии кадмия, покрытого слоем серебра, при нарушении покрытия. Какие продукты при этом образуются?

143. Цинк и серебро находятся в контакте в соляной кислоте. Напишите уравнения катодного и анодного процессов и состав продуктов коррозии.

144. Хром находится в контакте с медью в разбавленной соляной кислоте. Какой металл будет коррозировать? Напишите уравнения катодного и анодного процессов и состав продуктов коррозии.

145. Напишите уравнения электродных процессов, происходящих при коррозии сплава железа и меди во влажном воздухе.

146. Никель и цинк находятся в контакте в разбавленной соляной кислоте. Напишите уравнения катодного и анодного процессов и состав продуктов коррозии.

147. Медь не вытесняет водород из разбавленных кислот. Почему? Однако, если к медной пластинке, опущенной в кислоту, прикоснуться цинковой, то на меди начинается бурное выделение водорода. Дайте этому объяснение, составьте электронные уравнения катодного и анодного процессов.

148. Магний и олово находятся в контакте во влажном воздухе. Какой металл будет коррозировать и почему? Напишите уравнения катодного и анодного процессов и состав продуктов коррозии.

149. Составьте электронные уравнения анодного и катодного процессов, происходящих при коррозии хромированного железа в случае нарушения покрытия во влажном воздухе. Какие продукты при этом образуются?

150. Составьте электронные уравнения анодного и катодного процессов контактной коррозии никеля и серебра в среде соляной кислоты. Какие продукты при этом образуются?

151. Как происходит атмосферная коррозия лужёной меди при нарушении покрытия? Напишите уравнения катодного и анодного процессов и состав продуктов коррозии.

152. Медное изделие покрыто никелем. Какое это покрытие — катодное или анодное? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия при нарушении покрытия во влажном воздухе. Какие продукты при этом образуются?

153. Напишите уравнения электродных процессов, происходящих при коррозии сплава цинка и магния во влажном воздухе.

154. Как протекает атмосферная коррозия железа, покрытого слоем никеля, при нарушении покрытия? Напишите уравнения катодного и анодного процессов и состав продуктов коррозии.

155. Железное изделие покрыто кадмием. Какое это покрытие — катодное или анодное? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия при нарушении покрытия в соляной кислоте. Какие продукты при этом образуются?

156. Никель и магний находятся в контакте во влажном воздухе. Какой металл будет коррозировать и почему? Напишите уравнения катодного и анодного процессов и состав продуктов коррозии.

157. Серебро и олово находятся в контакте во влажном воздухе. Напишите уравнения катодного и анодного процессов и состав продуктов коррозии.

158. Железное изделие покрыто свинцом. Какое это покрытие — катодное или анодное? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия при нарушении покрытия во влажном воздухе. Какие продукты коррозии образуются?

159. В чём заключается сущность протекторной защиты металлов от коррозии? Приведите пример протекторной защиты железа в морской воде. Составьте электронные уравнения анодного и катодного процессов.

160. Железные пластинки, одна из которых покрыта оловом, другая — цинком, находятся во влажном воздухе. На какой из них быстрее образуется ржавчина в случае нарушения покрытия? Составьте уравнение анодного и катодного процессов коррозии этих пластинок. Каков состав продуктов коррозии?

📺 Видео

Коррозия металлов и меры по ее предупреждению. 8 класс.Скачать

Коррозия металлов и меры по ее предупреждению. 8 класс.

Коррозия металловСкачать

Коррозия металлов

Классификация коррозионных процессовСкачать

Классификация коррозионных процессов

Коррозия металлов и способы защиты от нееСкачать

Коррозия металлов и способы защиты от нее

Электрохимическая коррозия (алюминий — медь)Скачать

Электрохимическая коррозия (алюминий — медь)

Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.Скачать

Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.

Химия 11 класс (Урок№9 - Коррозия металлов и её предупреждение.)Скачать

Химия 11 класс (Урок№9 - Коррозия металлов и её предупреждение.)

Электродные потенциалы металлов. Электроды сравненияСкачать

Электродные потенциалы металлов. Электроды сравнения

Как писать уравнения электролиза? | Химия ЕГЭ 2022 | УмскулСкачать

Как писать уравнения электролиза? | Химия ЕГЭ 2022 | Умскул

Атмосферная коррозияСкачать

Атмосферная коррозия

Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Окислительно-восстановительные реакции и электрохимические сисетмыСкачать

Окислительно-восстановительные реакции и электрохимические сисетмы

Технологический институт - гальванический элемент, электролиз, коррозия. Задачи.Скачать

Технологический институт -  гальванический элемент, электролиз, коррозия. Задачи.

Химия 9 Коррозия металловСкачать

Химия 9 Коррозия металлов

Адиабатный процесс. 10 класс.Скачать

Адиабатный процесс. 10 класс.
Поделиться или сохранить к себе: