Уравнения для 6 класса по математике без скобок

Решение линейных уравнений. 6-й класс

Разделы: Математика

Класс: 6

Цели урока:

  • повторить правила раскрытия скобок и приведения подобных слагаемых;
  • ввести определение линейного уравнения с одним неизвестным;
  • познакомить учащихся со свойствами равенств;
  • научить решать линейные уравнения;
  • научить решать задачи на «было − стало».

Оборудование: компьютер, проектор.

Видео:Раскрытие скобок. 6 класс.Скачать

Раскрытие скобок. 6 класс.

Ход урока

I. Проверка предыдущего домашнего задания.

II. Повторение теоретического материала.

  1. Как найти неизвестное слагаемое? [От суммы отнять известное слагаемое]
  2. Как найти неизвестное уменьшаемое? [К вычитаемому прибавить разность]
  3. Как найти неизвестное вычитаемое? [От уменьшаемого отнять разность]
  4. Как найти неизвестный множитель? [Произведение разделить на известный множитель]
  5. Как найти неизвестное делимое? [Делитель умножить на частное]
  6. Как найти неизвестный делитель? [Делимое разделить на частное]
  7. Как раскрыть скобки, перед которыми стоит знак плюс? [Опустить скобки и этот знак плюс, переписать слагаемые с теми же знаками]
  8. Как раскрыть скобки, перед которыми стоит знак минус? [Опустить скобки и этот знак минус, переписать слагаемые с противоположными знаками]
  9. Как выглядит распределительное свойство умножения? [(a+b)∙c=ac+bc]

III. Устные задания по слайдам.

(слайд 2, слайд 3).

1) Раскройте скобки:

3+(х+2); 3-(х+2); 3+(х-7); 3-(х-7); 3+(-х+5); 3-(-х+5); -4(-5-х); 9(Уравнения для 6 класса по математике без скобок; 9(Уравнения для 6 класса по математике без скобок; 2(7+9х); 4(2-3х); -6(9-5х); -3(1+4х).

2) Приведите подобные слагаемые:

6b-b; 9,5m+3m; a —Уравнения для 6 класса по математике без скобокa; Уравнения для 6 класса по математике без скобокm-m; -4x-x+3; 7x-6y-3x+8y.

3) Упростите выражение:

IV. Новая тема. Решение линейных уравнений.

До сегодняшнего урока мы не умели решать уравнения, в которых неизвестное находилось слева и справа от знака равенства: 3x+7=x+15. Некоторые из нас постоянно забывают правила нахождения неизвестного слагаемого, уменьшаемого, вычитаемого. Сегодня мы постараемся разрешить все эти затруднения.

Уравнение, которое можно привести к виду ax=b, где a и b − некоторые числа (aУравнения для 6 класса по математике без скобок0), называется линейным уравнением с одним неизвестным.

Линейные уравнения обладают свойствами:

  1. Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (стр. 229 учебника).
  2. Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак (стр. 230 учебника).

Рассмотрим план решения линейного уравнения:

х-1+(х+2)=-4(-5-х)-5
х-1+х+2=20+4х-5
х+х-4х=20-5+1-2
-2х=14
х=14:(-2)
х=-7
Ответ: -7.
1) раскрыть скобки, если они есть;
2) слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестное − в правую;
3) привести подобные слагаемые;
4) найти неизвестный множитель.

Какими из свойств равенств мы воспользовались для решения уравнения? (вторым)

Рассмотрим примеры уравнений, при решении которых будет удобно воспользоваться и первым свойством.

Уравнения для 6 класса по математике без скобокх+3=Уравнения для 6 класса по математике без скобокх+5 │∙9 Удобно умножить на наименьшее общее кратное знаменателей дробей.

(Уравнения для 6 класса по математике без скобокх+3)∙9=(Уравнения для 6 класса по математике без скобокх+5)∙9 Далее − по плану.

Видео:Решение уравнений - математика 6 классСкачать

Решение уравнений - математика 6 класс

Уравнения для 6 класса по математике без скобок

Математику уж затем учить надо, что она ум в порядок приводит

Основные правила математики с примерами. 6 класс. Часть 2.

Содержание

Умножение. Свойства умножения

Произведением числа Уравнения для 6 класса по математике без скобокна натуральное число Уравнения для 6 класса по математике без скобокне равное 1, называют сумму, состоящую из Уравнения для 6 класса по математике без скобокслагаемых, каждое из которых равно а:

a · b = a + a + a + . . . + a ⏟ b

Если один из двух множителей равен 1, то произведение равно второму множителю:

Если один из множителей равен нулю, то произведение равно нулю:

Если произведение равно нулю, то хотя бы один из множителей равен нулю.

!Важное правило. Помогает решать уравнения

( x — a ) ( x — b ) = 0 ; И л и x — a = 0 , и л и x — b = 0 ; 2 к о р н я x = a и x = b . ( x — 5 ) ( x + 2 ) = 0 ; И л и x — 5 = 0 , и л и x + 2 = 0 ; 2 к о р н я x = 5 и x = — 2 .

Умножение обыкновенных дробей

Чтобы умножить дробь на натуральное число, надо ее числитель умножить на это число, а знаменатель оставить без изменения:

Чтобы умножить смешанные числа, надо сначала записать их в виде неправильных дробей, а затем воспользоваться правилом умножения дробей.

Умножение рациональных чисел

Чтобы умножить два числа с разными знаками, надо умножить их модули и перед полученным произведением поставить знак «-».

Чтобы умножить два отрицательных числа, надо умножить их модули.

Для любого рационального числа Уравнения для 6 класса по математике без скобок:

Если произведение Уравнения для 6 класса по математике без скобокУравнения для 6 класса по математике без скобок— отрицательное, то числа Уравнения для 6 класса по математике без скобоки Уравнения для 6 класса по математике без скобокимеют раз­ные знаки.

Деление обыкновенных дробей

Чтобы разделить одну дробь на другую, надо делимое умножить на число, обратное делителю:

a b : c d = a b · d c

Деление рациональных чисел

Чтобы найти частное двух чисел с разными знаками, надо мо­дуль делимого разделить на модуль делителя и перед полученным числом поставить знак «-».

Чтобы найти частное двух отрицательных чисел, надо модуль делимого разделить на модуль делителя.

Нахождение дроби от числа

Чтобы найти дробь от числа, можно число умножить на эту дробь.

Чтобы найти проценты от числа, можно представить проценты в виде дроби и умножить число на эту дробь.

Нахождение числа по его дроби

Чтобы найти число по значению его дроби, можно это значение разделить на эту дробь.

Найти число, если известно, что

е г о д р о б ь 5 7 с о с т а в л я е т ч и с л о 15 : 15 : 5 7 = 15 · 7 5 = 15 3 · 7 5 1 = 21

Чтобы найти число по его процентам, можно представить про­центы в виде дроби и разделить значение процентов на эту дробь.

Найти число, если известно, что

24 % э т о г о ч и с л а р а в н ы 48 . 24 % = 24 100 ; 48 : 24 100 = 48 · 100 24 = 48 2 · 100 24 1 = 200

Степень числа

Степенью числа Уравнения для 6 класса по математике без скобокс натуральным показателем Уравнения для 6 класса по математике без скобок, большим Уравнения для 6 класса по математике без скобок, на­зывают произведение Уравнения для 6 класса по математике без скобокмножителей, каждый из которых равен Уравнения для 6 класса по математике без скобок:

a n = a · a · a · … · a ⏟ n

Число Уравнения для 6 класса по математике без скобокпри этом называют основанием степени.

Степенью числа Уравнения для 6 класса по математике без скобокс показателем Уравнения для 6 класса по математике без скобокназывают само число Уравнения для 6 класса по математике без скобок

Вторую степень числа называют также квадратом числа. Напри­мер, запись Уравнения для 6 класса по математике без скобокчитают: « Уравнения для 6 класса по математике без скобокв квадрате».
Третью степень называют кубом числа, а запись Уравнения для 6 класса по математике без скобокчитают: « Уравнения для 6 класса по математике без скобокв кубе».

Если в числовое выражение входит степень, то сначала выпол­няют возведение в степень, а затем производят другие действия.

Найти значение выражения

5 · 2 3 + 15 5 · 2 2 3 1 + 3 15 = 5 · 8 + 15 = 40 + 15 = 55

Числовые и буквенные выражения

Запись, составленную из чисел, знаков арифметических действий и скобок, называют числовым выражением.

Запись, составленную из чисел, букв, знаков арифметических действий и скобок, называют буквенным выражением.

Приведение подобных слагаемых

Чтобы привести подобные слагаемые, надо сложить их коэффици­енты и полученный результат умножить на общую буквенную часть.

Раскрытие скобок

Если перед скобками стоит знак «-», то при раскрытии скобок надо опустить этот знак, а все знаки, стоящие перед слагаемыми в скобках, изменить на противоположные.

Если перед скобками стоит знак « + », то при раскрытии скобок надо опустить этот знак, а все знаки, стоящие перед слагаемыми в скобках, оставить без изменений.

Свойства уравнений
  • Если к обеим частям данного уравнения прибавить (или из обеих частей вычесть) одно и то же число, то получим уравнение, имеющее те же корни, что и данное.
  • Если данное уравнение не имеет корней, то, прибавив к обе­им его частям одно и то же число, получим уравнение, тоже не имеющее корней.
  • Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив при этом его знак на противоположный, то по­лучим уравнение, имеющее те же корни, что и данное.
  • Если обе части уравнения умножить (разделить) на одно и то же отличное от нуля число, то получим уравнение, имеющее те же корни, что и данное.
Отношения
  • Частное двух чисел Уравнения для 6 класса по математике без скобоки Уравнения для 6 класса по математике без скобок, не равных нулю, еще называют от­ношением чисел Уравнения для 6 класса по математике без скобоки Уравнения для 6 класса по математике без скобок, или отношением числа Уравнения для 6 класса по математике без скобокк числу Уравнения для 6 класса по математике без скобок.
  • Отношение положительных чисел Уравнения для 6 класса по математике без скобоки Уравнения для 6 класса по математике без скобокпоказывает, во сколько раз число Уравнения для 6 класса по математике без скобокбольше числа Уравнения для 6 класса по математике без скобок, или какую часть число Уравнения для 6 класса по математике без скобоксоставляет число Уравнения для 6 класса по математике без скобок.

показывает, что число 10 в 5 раз больше числа 2 или число 2 в 5 раз меньше числа 10.

  • Отношение не изменится, если его члены умножить или раз­делить на одно и то же число, не равное нулю.
Пропорции

Равенство двух отношений называют пропорцией. В буквенном виде пропорцию можно записать так:

a : b = c : d и л и a b = c d

Числа Уравнения для 6 класса по математике без скобоки Уравнения для 6 класса по математике без скобокназывают крайними членами пропорции, а чис­ла Уравнения для 6 класса по математике без скобоки Уравнения для 6 класса по математике без скобок— средними членами пропорции.

Основное свойство пропорции

Произведение крайних членов пропорции равно произведению ее средних членов:

a b = c d ⇒ a d = b c

Если Уравнения для 6 класса по математике без скобок, Уравнения для 6 класса по математике без скобок, Уравнения для 6 класса по математике без скобоки Уравнения для 6 класса по математике без скобокчисла, не равные нулю, и Уравнения для 6 класса по математике без скобокУравнения для 6 класса по математике без скобок= Уравнения для 6 класса по математике без скобокУравнения для 6 класса по математике без скобок, то отношения

могут образовывать пропорцию

Процентное отношение двух чисел

Процентное отношение двух чисел — это их отношение, выраженное в процентах. Оно показывает, сколько процентов одно число составляет от другого.
Чтобы найти процентное отношение двух чисел, надо их отношение умножить на 100 и к результату дописать знак процента.

Прямая и обратная пропорциональная зависимость

Две величины называют прямо пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.

Если величины Уравнения для 6 класса по математике без скобоки Уравнения для 6 класса по математике без скобокобратно пропорциональны, то их соответ­ствующие значения удовлетворяют равенству

, где Уравнения для 6 класса по математике без скобок-число, постоянное для данных величин.

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Памятка по теме «Решение уравнений» (6 класс)

Уравнения для 6 класса по математике без скобок

В данном материале рассматривается тема «Решение уравнений» в 6 классе. Для более быстрого и успешного усвоения алгоритма решения уравнений я раздаю памятку каждому ученику.

Просмотр содержимого документа
«Памятка по теме «Решение уравнений» (6 класс)»

Шаг 1. Раскрыть скобки (если они есть), используя правила:

Правило 1. Если перед скобками стоит знак «плюс», то надо опустить эти скобки и этот знак «плюс», сохранив знаки у слагаемых, стоящих в скобках.

Правило 2. Если перед скобками стоит знак «минус», то надо опустить эти скобки и этот знак «минус», изменив знаки у слагаемых, стоящих в скобках, на противоположные.

Правило 3. Чтобы умножить положительное число на сумму, надо умножить это число на каждое слагаемое в сумме, сохранив знаки у слагаемых.

Правило 4. Чтобы умножить отрицательное число на сумму, надо умножить это число на каждое слагаемое в сумме, изменив знаки у слагаемых на противоположные.

Шаг 2. Привести подобные слагаемые (слагаемые, у которых одинаковая буквенная часть), используя правила:

Правило 1. Чтобы сложить два числа с одинаковыми знаками, надо:

поставить их общий знак;

сложить их модули.

Правило 2. Чтобы сложить два числа с разными знаками, надо:

поставить знак числа с бÓльшим модулем;

из бÓльшего модуля вычесть меньший.

Правило 3. Сумма двух противоположных чисел равна нуля.

Правило 4. От прибавления нуля число не изменяется.

Шаг 3. Перенести слагаемые из одной части уравнения в другую, изменив при этом их знак на противоположный. Слагаемые, содержащие неизвестное, собирают в левой части уравнения, числа – в правой части уравнения.

Шаг 4. Привести подобные слагаемые отдельно в левой части уравнения, отдельно в правой части уравнения.

Шаг 5. Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель, используя правила:

Правило 1. Чтобы разделить два числа с одинаковыми знаками, надо:

поставить знак «плюс»;

модуль делимого разделить на модуль делителя.

Правило 2. Чтобы разделить два числа с разными знаками, надо:

поставить знак «минус»;

модуль делимого разделить на модуль делителя.

Правило 3. При делении нуля на любое число, не равное нулю, получается нуль.

Правило 4. Делить на нуль запрещено!

📸 Видео

Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать

Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравнения

Решение уравнений. Часть 2. 6 класс.Скачать

Решение уравнений. Часть 2. 6 класс.

6 класс, 42 урок, Решение уравненийСкачать

6 класс, 42 урок, Решение уравнений

Решение простых линейных уравнений. 6 класс.Скачать

Решение простых линейных уравнений. 6 класс.

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Как решать уравнения со скобками быстро и правильно. Математика 6 класс.Скачать

Как решать уравнения со скобками быстро и правильно. Математика 6 класс.

Раскрытие скобок - математика 6 классСкачать

Раскрытие скобок - математика 6 класс

Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

Линейное уравнение с одной переменной. Практическая часть. 6 класс.

Математика 6 класс. РАСКРЫТИЕ СКОБОК. РЕШЕНИЕ УРАВНЕНИЙ.Скачать

Математика 6 класс. РАСКРЫТИЕ СКОБОК. РЕШЕНИЕ УРАВНЕНИЙ.

Уравнения с дробями 6 класс (задания, примеры) - как решать?Скачать

Уравнения с дробями 6 класс (задания, примеры) - как решать?

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

Сложение и вычитание рациональных чисел. 6 класс.Скачать

Сложение и вычитание рациональных чисел. 6 класс.

Решение уравнений. Видеоурок 28. Математика 6 классСкачать

Решение уравнений. Видеоурок 28. Математика 6 класс
Поделиться или сохранить к себе: