Гиперболическая форма уравнений длинной линии (ДЛ) имеет следующий вид (после применения формул Эйлера для решения уравнений длинной линии с использованием падающей и отраженной волн)
U ( x ) = U 2 c h γ x + I 2 Z В s h γ x ; I ( x ) = U 2 Z В s h γ x + I 2 c h γ x ,
что соответствует гиперболической форме уравнений симметричного четырехполюсника
U 1 = U 2 c h γ + I ′ 2 Z C s h γ ; I 1 = U 2 Z C s h γ + I ′ 2 c h γ .
Поскольку I’2 соответствует току I2 ДЛ, волновое сопротивление ZB = ZC соответствует характеристическому сопротивлению четырехполюсника, а характеристическая мера передачи четырехполюсника γ соответствует γ·l.
Здесь l – длина длинной линии; x – координата длинной линии, отсчитанная от ее конца (нагрузки); U1, I1 и U2, I2 – переменные входа и выхода длинной линии.
Таким образом, длинной линии – симметричный четырехполюсник.

Видео:Длинные линии │Цепи с распределенными параметрами │Теория, часть 1Скачать

Цепи с распределенными параметрами
5. Решение уравнений состояния. Выполняется численным методом (например, Рунге-Кутта [9]). Если характеристики рис. 11.53 линеаризовать (подобно тому, как это было сделано в примере 11.13) и оценить реальную длительность переходного процесса, то можно выбрать шаг по времени Dt. При наличии колебательного процесса в линеаризованной цепи должно быть 






12. ЦЕПИ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ
12.1. Общие положения
12.1.1. основные понятия и определения
Параметры реальной электрической цепи практически всегда распределены по длине ее участков. Но при решении большинства практических задач это обстоятельство не оказывает существенного влияния на результаты анализа. В этих случаях можно считать, что сопротивления, индуктивности, емкости сосредоточены на определенных участках цепи и соответствующим образом отражаются в схеме замещения. Такое допущение с успехом использовалось во всех предыдущих разделах курса, где рассматривались цепи с сосредоточенными параметрами.
Однако существуют и задачи, условия которых просто не позволяют пренебречь распределением параметров. Устройство можно рассматривать как электрическую цепь, если оно имеет достаточно большую протяженность только в определенном направлении. В этом случае можно говорить о распределении параметров именно в этом направлении. Необходимость учета распределения параметров цепи вдоль некоторого направления возникает в тех случаях, когда промежуток времени, за который электромагнитная волна распространяется вдоль цепи в этом направлении, соизмерим с интервалом времени, за который токи и напряжения в цепи могут измениться на заметную величину. Разумеется, токи и напряжения при этом оказываются функциями двух независимых переменных: времени t и расстояния x. Поэтому уравнения, описывающие состояние цепи с распределенными параметрами, – это уравнения в частных производных.
Примерами таких цепей служат, в первую очередь, протяженные линии электропередачи, линии связи, высокочастотные линии радиотехнических и телевизионных устройств. Впрочем, и обмотки трансформаторов, и обмотки электрических машин, работающих в импульсном режиме, также должны рассматриваться как цепи с распределенными параметрами.
Выберем в качестве объекта исследования двухпроводную линию. Нам придется считать, что каждый сколь угодно малый элемент длины линии обладает параметрами, отражающими в схеме замещения известные явления. Как обычно, сопротивление будет учитывать тепловые потери в проводах, индуктивность – явление самоиндукции при изменении магнитного потока, емкость – токи смещения между проводами, а проводимость – токи утечки по изоляции. Если эти параметры равномерно распределены по длине, то такую линию называют однородной. Выведем уравнения, описывающие состояние однородной двухпроводной линии, считая ее параметры на единицу длины 



12.1.2. Уравнения однородной двухпроводной линии
в частных производных
Выделим на расстоянии х от начала линии элемент линии длиной dx, на входе которого существуют напряжение u и ток i (рис. 12.1,а). На выходе эти величины получают приращения 






Приводя подобные, пренебрегая величинами второго порядка малости, после деления на dx, получим уравнения однородной двухпроводной линии в частных производных:

Решение этой системы уравнений при заданных начальных и граничных условиях позволяет определить искомые зависимости i(x,t) и u(x,t). Уравнения справедливы для описания как установившихся, так и переходных режимов.
12.2. установившийся синусоидальный режим
работы однородной двухпроводной линии
12.2.1. Уравнения линии в установившемся
Для решения уравнений линии в частных производных в установившемся синусоидальном режиме используем комплексный метод. При переходе от синусоидальных функций времени к их комплексным изображениям окажется, что
Поэтому уравнения (12.1) в комплексной форме записи примут вид:
Обозначив здесь 


Подстановка I из первого уравнения системы (12.2) во второе, приводит к линейному дифференциальному уравнению второго порядка
с комплексно сопряженными корнями характеристического уравнения ±g. Решение такого уравнения можно записать в виде суммы экспонент:

Здесь 
коэффициент распространения линии, 



Подстановка выражения (12.3) в первое уравнение системы (12.2) позволяет найти комплекс тока

где величина 
имеет размерность сопротивления.
Для того, чтобы выяснить физический смысл слагаемых, входящих в формулы (12.3), (12.5), и их отношения (12.6), перейдем от комплексных величин к функциям времени.
12.2.2. Бегущие волны
Запишем в показательной форме комплексы


Тогда мгновенные значения величин, соответствующих комплексным слагаемым в выражении (12.3), примут вид:
При фиксированном значении координаты 









Если же зафиксировать фазу синусоиды 


Это означает, что мы имеем дело с электромагнитной волной, которая движется в сторону увеличения х с фазовой скоростью 



Очевидно, с помощью аналогичных рассуждений можно показать, что вторая пара составляющих напряжения и тока
характеризует обратную волну, которая движется в сторону уменьшения х с той же самой скоростью. Причем амплитуды напряжения и тока также затухают по мере продвижения волны.
Поэтому комплекс 
В свою очередь коэффициент распространения характеризует изменение тока и напряжения волны по мере ее продвижения. Действительно, из формул (12.3–12.6) следует:

Выбор отрезка Dх, равного единице длины, позволяет дать следующие определения.
Коэффициент затухания 
Коэффициент фазы 


Таким образом, установившийся синусоидальный режим работы линии можно рассматривать как результат наложения двух затухающих бегущих в противоположных направлениях с одинаковой скоростью волн. Если х отсчитывается от начала линии (рис. 12.1,а), то возникновение обратной волны можно рассматривать как результат отражения прямой волны от нагрузки и называть волны падающей и отраженной.
Пометим индексом 2 значения величин в конце линии (x = l), где включена нагрузка с комплексным сопротивлением 
Отсюда нетрудно найти коэффициент отражения:

В частности в режимах холостого хода 


При согласованной нагрузке мощность в начале линии равна
и коэффициент полезного действия

Известны волновое сопротивление и коэффициент распространения линии электропередачи, работающей на промышленной частоте f = 50 Гц: 

Определить первичные параметры линии: 



Воспользовавшись формулами (12.4) и (12.6), найдем:
Отсюда 
Затем вычисляем угловую частоту 
12.2.3. Уравнения линии в гиперболических функциях
Определим постоянные интегрирования в уравнениях (12.3) и (12.5) из граничных условий, считая, что в начале линии (х = 0 на рис. 12.3,а) и напряжение 



После подстановки постоянных в уравнения (12.3), (12.5) и приведения подобных заметим, что
В результате получим уравнения линии в гиперболических функциях:

Подстановка x = l дает:
Если разрешить эти уравнения относительно 

Последние две системы уравнений совпадают по форме с уравнениями четырехполюсника в гиперболических функциях, характеристическое сопротивление и постоянная передачи которого очень просто выражаются через вторичные параметры линии:
Соответственно коэффициенты затухания и фазы такого эквивалентного линии четырехполюсника равны:
Все эти параметры определяются в режиме согласованной нагрузки (см. раздел 9.7 [6]).
Очевидно, при отсчете расстояния y от конца линии (рис.12.3,б) уравнения линии в гиперболических функциях примут следующий вид:

Для вывода этих формул достаточно в предыдущей системе уравнений произвести обратную замену l на y. Эту запись удобно использовать для исследования режимов работы линии при изменении сопротивления нагрузки
12.2.4. Линия без искажений
Если линия используется для передачи информации (линия связи, радио и т. п.), то для достоверности передачи необходимо, чтобы коэффициент затухания и волновое сопротивление линии не зависели от частоты. В этом случае, несмотря на затухание, форма передаваемого сигнала не будет изменяться и при согласованной нагрузке не возникнут отраженные волны. Если к тому же коэффициент фазы будет пропорционален частоте β = const·ω, то и фазовая скорость 

Действительно, из (12.4) и (12.6) легко получить


Так что ни в волновое сопротивление 



Фазовая скорость волн в линии достигает в этом случае наибольшего значения:

Если линия работает в режиме согласованной нагрузки, то в линии существует только одна волна, поэтому в любой точке линии в любой момент времени 
Следует иметь в виду, что как у воздушных, так и у кабельных линий 
Известны первичные параметры линии связи:
Определить, какую дополнительную индуктивность нужно включать через каждый километр линии, чтобы сигналы по ней передавались без искажения.
Из условия (12.11) найдем, какой должна быть индуктивность единицы длины линии без искажения:
Поэтому 
12.2.5. Линия без потерь
В некоторых практически важных случаях (особенно при высоких частотах в линиях связи, телевидения, радио) оказывается 

Тогда коэффициент затухания a = 0, коэффициент распространения 


Тогда и уравнения линии в гиперболических функциях (12.10) переходят в уравнения линии без потерь в тригонометрических функциях:

Здесь координата y отсчитывается от конца линии (рис. 12.3,б), причем, как в линии без искажений, волновое сопротивление линии без потерь 


Рассмотрим характерные режимы работы линии.
Холостой ход. 

При этих условиях уравнения (36.5) превращаются в

В результате наложения двух незатухающих волн одинаковой амплитуды, движущихся в противоположных направлениях, в линии существуют стоячие волны. Узлы напряжения соответствуют пучностям тока и оказываются в точках с координатами 



Входное сопротивление линии длиной l

имеет чисто реактивный характер. При 






Короткое замыкание. 



В этом режиме тоже существуют стоячие волны, но по сравнению с предыдущим случаем узлы и пучности токов и напряжений сдвинуты на четверть длины волны. Входное сопротивление
тоже чисто реактивное. Но его характер противоположен характеру 


где 



И здесь обнаружились стоячие волны, но узлы и пучности напряжения (тока) смещены в сторону увеличения y по отношению к их расположению в режиме короткого замыкания на расстояние 

Три режима, рассмотренные выше, объединяет общее обстоятельство: отсутствует потребление энергии и в нагрузке, и в линии. Только в этом случае могут существовать точки, через которые не передается энергия – узлы тока и напряжения. На участках между этими точками осуществляется обмен энергией между электрическим и магнитным полями.
Известно, что высокочастотная линия с волновым сопротивлением 
Определить величину и характер сопротивления нагрузки, если ближайший к концу линии узел тока находится на расстоянии 

Расстояние между узлами тока и напряжения – это четверть длины волны. Поэтому 







Проанализировав эти выражения, можно заметить, что ни кривая U(y), ни кривая I(y) не имеют ни узлов, ни пучностей при любых 






Если же 





Естественно, наибольшее значение 
Согласованная нагрузка. 

Действующие значения тока и напряжения во всех точках линии одинаковы (рис. 12.5), причем мгновенные значения этих величин совпадают по фазе.
Линия без потерь длиной 

В режиме короткого замыкания входное сопротивление линии стремится к бесконечности, то есть четвертьволновая линия представляет собой идеальный изолятор.
В режиме активной нагрузки четвертьволновую линию можно рассматривать как «трансформатор сопротивлений» и применять для согласования генератора с внутренним сопротивлением и приемника с сопротивлением . Параметры линии следует подобрать таким образом, чтобы Тогда входное сопротивление пассивного двухполюсника, подключенного к генератору (система линия–нагрузка), а эквивалентное внутреннее сопротивление активного двухполюсника (система генератор–линия), к которому подключена нагрузка, равно При таком подборе параметров генератор будет выдавать за период максимально возможную энергию, причем вся эта энергия перейдет в нагрузку, поскольку потери в линии отсутствуют. Аналогичное условие используется для согласования двух линий с разными волновыми сопротивлениями 


12.3. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЦЕПЯХ
С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ
12.3.1. Прямая и обратная волны
В линиях электропередачи, связи, обмотках трансформаторов и других цепях с распределенными параметрами переходные процессы возникают чаще всего по тем же причинам, что и в цепях с сосредоточенными параметрами. Это может быть подключение цепи к источнику и отключение от него, подключение нагрузки и ее отключение, скачкообразное изменение параметров какого-либо участка цепи (например, в случае аварии). Кроме того, при достаточной протяженности цепи переходные процессы могут возникнуть и в случае изменения электромагнитных полей в окружающем пространстве (например, во время грозы). Токи и напряжения во время переходных процессов зависят от двух переменных – времени t и расстояния x. Переходные процессы имеют волновой характер.
Ниже рассматриваются примеры переходных процессов в однородной двухпроводной линии без потерь 

Решим их операторным методом, подобно тому, как в разделе 12.2.1 решали уравнения (12.1) комплексным методом.
Пусть 



Видео:Лекция 185. Уравнения для длинных линийСкачать

Уравнения длинной линии с гиперболическими функциями
Кривая, форма которой соответствует однородной гибкой нерастяжимой тяжелой нити, закрепленной с обоих концов и находящейся под действием силы тяжести, называется цепной линией. Очевидно, цепная линия является плоской кривой, то есть такой кривой, все точки которой лежат в одной плоскости.
Долгое время считалось, что цепная линия представляет собой параболу, подобно тому, как траектория движения камня в поле земного тяготения есть парабола. Однако уже в начале 17 века великий итальянский мыслитель Галилео Галилей высказал предположения, что цепная линия не является параболой. Строгое решение задачи с выводом уравнения цепной линии впервые было найдено в трудах великих немецких мыслителей Готфрида Лейбница и Иоганна Бернулли, а также великого нидерландского естествоиспытателя Христиана Гюйгенса в 1691 году.
Рассмотрим элементарный участок нити длиной (Delta l) (Рисунок 3). Масса этого участка равна (Delta m = rho S Delta l) и на него действуют распределенная по длине сила тяжести интенсивности (rho gS), направленная вниз и равная (Delta m g = rho g S Delta l). Здесь (rho) — объемная плотность материала нити, (g) — ускорение свободного падения, (S) — площадь поперечного сечения нити.
Также на концах данного участка действуют силы натяжения (T(l)) и (T(l+Delta l)).
Рисунок 1. Цепи, используемые при штабелирование парахода “Бремен”. Фото из Федерального архива Германии.
Bundesarchiv Bild 102-06406, Bremen, Stapellauf des Dampfers «Bremen».
Рисунок 2. Цепи ограждения Царь-пушки в московском кремле. http://www.fotokonkurs.ru/photo/58515
Условие равновесия рассматриваемого участка запишется в виде: $$ vec T(l) + vec T(l+Delta l) + Delta mvec g = 0. $$ В проекции на оси координат получим $$ — T(l)cos(alpha) + T(l+Delta l)cos(alpha + Delta alpha) = 0. $$ $$ — T(l)sin(alpha) + T(l+Delta l)sin(alpha + Delta alpha) — rho gSDelta l = 0.$$ Из первого уравнения получаем, что горизонтальная компонента силы натяжения (T(l)) всегда постоянна: ( T(l)cosalpha(l) = T_0 = const.) Второе уравнение перепишем в виде: $$ d(T(l)sin(alpha(l)) = d(rho gSl).$$ С учётом сказанного, можем записать $$ T_0 d(tg(alpha(l)) = rho gSdl).$$ Памятуя о геометрическом смысле производной, запишем (tgalpha = y’) и тогда получим $$frac= frac.$$ Переходя к переменной x, используя правило дифференцирования сложной функции и выражение для дифференциала дуги кривой, получим $$frac= frac cdot frac= frac cdot frac<dx cdot sqrt> = $$ $$ = frac cdot frac <sqrt> = frac .$$ Отсюда, учитывая, что производная от первой производной есть вторая производная, получаем $$y» = frac cdot sqrt.$$
Последнее уравнение называется дифференциальным уравнением цепной линии. Это уравнение второго порядка, допускающее понижение порядка. Чтобы понизить порядок уравнения сделаем замену (z(x)=y’). Тогда (y»=z’). Подставляя в последнее дифференциальное уравнение, получим $$frac = z’ frac cdot sqrt.$$
- = frac cdot frac
- = frac cdot frac<dx cdot sqrt> = $$ $$ = frac cdot frac <sqrt> = frac .$$ Отсюда, учитывая, что производная от первой производной есть вторая производная, получаем $$y» = frac cdot sqrt.$$
Последнее уравнение называется дифференциальным уравнением цепной линии. Это уравнение второго порядка, допускающее понижение порядка. Чтобы понизить порядок уравнения сделаем замену (z(x)=y’). Тогда (y»=z’). Подставляя в последнее дифференциальное уравнение, получим $$frac = z’ frac cdot sqrt.$$
Рисунок 3. Ценная линия и расчётная схема.
Получили уравнение с разделяющимися переменными, которое после элементарных преобразований принимает вид $$frac<sqrt> = frac cdot dx.$$ Интегрируем последнее уравнение $$intfrac<sqrt> = frac int dx,$$ $$ln|z + sqrt| = frac cdot x + C_1.$$ Принимая за начало координат нижнюю точку цепной линии, заметим, что касательная в нижней точке горизонтальная, другими словами, нижняя точка является точкой экстремума для функции (y(x)). Следовательно, (y’(0)=z(0)=0). Подставим в последнее выражение (x=0, y=0, z=0). В результате получим (С_1 = 0). Тогда уравнение цепной линии перепишется в виде $$ln|z + sqrt| = frac cdot x.$$ Потенцируя полученное уравнение, перепишем его в показательной форме
Здесь для сокращения записи мы ввели обозначение (frac = kappa.)
Умножим обе части уравнение (1) на выражение сопряжённое к левой части (z-sqrt). Получим $$(z + sqrt)cdot(z — sqrt) = e^cdot(z — sqrt).$$ Нетрудно заметить, что $$(z + sqrt)cdot(z — sqrt) = z^2 — (sqrt)^2 = z^2 -1 + z^2 = -1.$$ Вследствие последнего замечания, уравнение можно переписать в виде $$e^cdot(z — sqrt) = -1.$$ или в виде $$z — sqrt = -e^. $$ Прибавим последнее выражением к выражению (1), и поделим полученное равенство на 2. В результате получим $$z = frac <e^- e^>. $$ Определение 1. Гиперболическим синусом от (x) называется функция, определённая следующим выражением $$sh(x) = frac <e^- e^>. $$ Определение 2. Гиперболическим косинусом от (x) называется функция, определённая следующим выражением $$sh(x) = frac <e^+ e^>. $$ Предложение 1. Производная от гиперболического косинуса есть гиперболический синус, производная от гиперболического синуса есть гиперболический косинус, то есть$$sh'(x) = ch(x),$$ $$ch'(x) = sh(x).$$ Доказательство. $$sh'(x) = left(frac <e^- e^>right)’ = frac <(e^- e^)’> = frac <(e^)’ — (e^)’> = frac <(e^)’ + (e^)’> = ch(x);$$ $$ch'(x) = left(frac <e^+ e^>right)’ = frac <(e^+ e^)’> = frac <(e^)’ + (e^)’> = frac <(e^)’ — (e^)’> = sh(x).$$ Доказательство завершено. ❑
Следствие 1. Первообразная от гиперболического косинуса есть гиперболический синус, а первообразная от гиперболического синуса есть гиперболический косинус.
Следствие 2. $$int sh(x)dx = ch(x) + C, $$ $$ int ch(x)dx = sh(x) + C.$$
С учётом сформулированных определений, а также памятуя о сделанной ранее замене (z(x)), перепишем выражение для прогиба в следующем виде $$ y’ = z = frac <e^- e^> = sh(kappa x).$$
На основании предложения 1 и следствий к нему, после интегрирования получим $$ y(x) = int sh(kappa x)dx = frac cdot ch(kappa x) + C.$$
В принятой системе координат, когда нижняя точка цепной линии является началом системы координат, справедливо следующее начальное условие (y(0)=0). Подставим это условие в найденное уравнение цепной линии и получим $$ y(0) = frac + C = 0,$$ $$ frac cdot frac +C = frac cdot frac +C = frac + C = 0. $$ Отсюда (С=-frac ) и уравнение цепной линии запишется в виде $$ y(x) = frac left(ch(kappa x) — 1right).$$
Таким образом, форма цепной линии определяется как гиперболический косинус с параметром (kappa). Кроме гиперболического синуса и гиперболического косинуса существуют также гиперболический тангенс и котангенс, которые определяются по тому же принципу, что и тригонометрический тангенс и котангенс, а именно:
Определение 3. Гиперболическим тангенсом от (x) называется функция, определённая следующим выражением $$th(x) = frac .$$
Определение 4. Гиперболическим котангенсом от (x) называется функция, определённая как частное гиперболического скосинуса и гиперболического синуса. То есть гиперболический котангенс это функция, определённая следующим выражением $$cth(x) = frac .$$
Из сделанных определений следуют равенства $$th(x) cdot cth(x) = 1;$$ $$th(x) =frac <e^x — e^><e^x + e^>;$$ $$cth(x) =frac <e^x + e^><e^x — e^>.$$
Исследуем ряд других замечательных свойств гиперболических функций.
Предложение 2. Справедливы следующие тождества $$сh^2(x) — sh^2(x) = 1;$$ $$1-th^2(x) = frac ,$$ $$cth^2(x) — 1 = frac .$$ Доказательство.
Из определений гиперболического косинуса и гиперболического синуса следует: $$ch^2(x) — sh^2(x) = left(frac <e^+ e^>right)^2 — left(frac <(e^- e^)>right)^2 = $$ $$ = frac <(e^)^2 + 2e^xe^ + (e^)^2> — frac <(e^)^2 — 2e^xe^ + (e^)^2> = e^xe^ = e^ = e^0 = 1.$$ Первое тождество доказано. Из него следует $$ch^2(x) = 1 + sh^2(x);$$ $$sh^2(x) = ch^2(x) — 1.$$ Тогда $$1 — th^2(x) = 1 — frac = frac = frac .$$ $$cth^2(x) — 1 = frac — 1 = frac = frac .$$ Все три тождества доказаны. ❑
Задание.
Найти производные гиперболического тангенса и гиперболического котангенса.
Решение.
По правилу дифференцирования частного, получим для производной гиперболического тангенса $$th'(x) = left(fracright)’ = frac = $$ $$ = frac = frac = frac .$$
Аналогично получим производную для функции гиперболический котангенс $$cth'(x) = left(fracright)’ = frac = $$ $$ = frac = frac = — frac .$$
Таким образом, мы доказали следующие соотношения $$ th'(x) = frac ;$$ $$ cth'(x) = — frac .$$
Обратим внимание на некоторое сходство полученных тождеств с соответствующими тригонометрическими тождествами.
🎬 Видео
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

ТОЭ 56. Запись А-уравнений четырёхполюсника с помощью гиперболических функций.Скачать

Установившийся режим в однородной линии. Уравнение однородной линии с гиперболическими функциями.Скачать

Гиперболические функции и формула ЭйлераСкачать

Длинная линия. Что там внутри?Скачать

2.1. Метод характеристик. Задача Коши для гиперболического уравнения на плоскости.Скачать

Длинные линии │Линии без искажений и потерь │Теория, часть 2Скачать

Линии с распределёнными параметрами в статических режимах работыСкачать

Основы радиочастотной электроники. Лекция 1. Теория длинных линийСкачать

Лекция 101-1. Линии с распределенными параметрами. Первичные параметры и основные уравненияСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Гиперболические функции. ВведениеСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Определение гиперболических функций chx и shx.Скачать

9 класс, 5 урок, Уравнение линии на плоскостиСкачать

Длинные линии с потерями. Согласование линий.Скачать













































