Уравнения четвертой степени в огэ

Видео:ВСЕ ТИПЫ 20 ЗАДАНИЕ 2 ЧАСТЬ ОГЭ МАТЕМАТИКА 2023Скачать

ВСЕ ТИПЫ 20 ЗАДАНИЕ 2 ЧАСТЬ ОГЭ МАТЕМАТИКА 2023

Решение уравнений 4-ой степени. Метод Феррари

Уравнения четвертой степени в огэСхема метода Феррари
Уравнения четвертой степени в огэПриведение уравнений 4-ой степени
Уравнения четвертой степени в огэРазложение на множители. Кубическая резольвента
Уравнения четвертой степени в огэПример решения уравнения 4-ой степени

Уравнения четвертой степени в огэ

Видео:Задание №20. Уравнение 2 часть ОГЭ по математике 2023 | УмскулСкачать

Задание №20. Уравнение 2 часть ОГЭ по математике 2023 | Умскул

Схема метода Феррари

Целью данного раздела является изложение метода Феррари , с помощью которого можно решать уравнения четвёртой степени

a0x 4 + a1x 3 + a2x 2 +
+ a3x + a4 = 0,
(1)

где a0, a1, a2, a3, a4 – произвольные вещественные числа, причем Уравнения четвертой степени в огэ

Метод Феррари состоит из двух этапов.

На первом этапе уравнения вида (1) приводятся к уравнениям четвертой степени, у которых отсутствует член с третьей степенью неизвестного.

На втором этапе полученные уравнения решаются при помощи разложения на множители, однако для того, чтобы найти требуемое разложение на множители, приходится решать кубические уравнения.

Видео:Уравнение четвертой степениСкачать

Уравнение четвертой степени

Приведение уравнений 4-ой степени

Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x 4 + ax 3 + bx 2 +
+ cx + d = 0,
(2)

где a, b, c, d – произвольные вещественные числа.

Сделаем в уравнении (2) замену

Уравнения четвертой степени в огэ(3)

где y – новая переменная.

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

то уравнение (2) принимает вид

В результате уравнение (2) принимает вид

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Если ввести обозначения

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

то уравнение (4) примет вид

y 4 + py 2 + qy + r = 0,(5)

где p, q, r – вещественные числа.

Первый этап метода Феррари завершён.

Видео:Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столбиСкачать

Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столби

Разложение на множители. Кубическая резольвента

Добавив и вычитая в левой части уравнения (5) выражение

где s – некоторое число, которое мы определим чуть позже, из (5) получим

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Следовательно, уравнение (5) принимает вид

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Если теперь выбрать число s так, чтобы оно являлось каким-нибудь решением уравнения

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

то уравнение (6) примет вид

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Избавляясь от знаменателя, уравнение (7) можно переписать в виде

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

или, раскрыв скобки, — в виде

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Полученное кубическое уравнение (9), эквивалентное уравнению (7), называют кубической резольвентой уравнения 4-ой степени (5).

Если какое-нибудь решение кубической резольвенты (9) найдено, то уравнение (8) можно решить, разложив его левую часть на множители с помощью формулы сокращенного умножения «Разность квадратов».

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Таким образом, для решения уравнения (8) остаётся решить квадратное уравнение

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

а также квадратное уравнение

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Вывод метода Феррари завершен.

Видео:Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис ТрушинСкачать

Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис Трушин

Пример решения уравнения 4-ой степени

Пример . Решить уравнение

x 4 + 4x 3 – 4x 2 –
– 20x – 5 = 0.
(12)

Решение . В соответствии с (3) сделаем в уравнении (12) замену

x = y – 1.(13)

то в результате замены (13) уравнение (12) принимает вид

y 4 – 10y 2 – 4y + 8 = 0.(14)

В соответствии с (5) для коэффициентов уравнения (14) справедливы равенства

p = – 10, q = – 4, r = 8.(15)

В силу (9) и (15) кубической резольвентой для уравнения (14) служит уравнение

которое при сокращении на 2 принимает вид:

s 3 + 5s 2 – 8s – 42 = 0.(16)
s = – 3.(17)

Подставляя значения (15) и (17) в формулу (10), получаем уравнение

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Подставляя значения (15) и (17) в формулу (11), получаем уравнение

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

В завершение, воспользовавшись формулой (13), из (18) и (19) находим корни уравнения (12):

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Уравнения четвертой степени в огэ

Замечание . При решении примера мы попутно получили разложение левой части уравнения (14) на множители:

y 4 – 10y 2 – 4y + 8 =
= (y 2 – 2y – 4) (y 2 +
+ 2y – 2).
(20)

Предоставляем посетителю нашего сайта возможность убедиться в справедливости равенства (19) в качестве несложного упражнения.

Видео:ОГЭ №21 Как решать уравнение (x-3)^4-3(x-3)^2-10=0 Уравнение 4 степени Уравнение с одинаковыми скобкСкачать

ОГЭ №21 Как решать уравнение (x-3)^4-3(x-3)^2-10=0 Уравнение 4 степени Уравнение с одинаковыми скобк

Решение уравнений четвертой степени

Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.

Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.

Видео:ОГЭ 2022 (Задание 20)Уравнения 4-ой степени, разложение на множителиСкачать

ОГЭ 2022 (Задание 20)Уравнения 4-ой степени, разложение на множители

Решение двучленного уравнения четвертой степени

Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .

Для решения этого типа уравнений применяются формулы сокращенного умножения:

A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A — 2 B A x 2 = 0 x 2 + B A 2 — 2 B A x 2 = 0 x 2 — 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0

Остается лишь найти корни квадратных трехчленов.

Решить уравнение четвертой степени 4 x 4 + 1 = 0 .

Решение

Для начала проведем разложение многочлена 4 x 4 + 1 на множители:

4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = ( 2 x 2 + 1 ) 2 — 4 x 2 = 2 x 2 — 2 x + 1 ( 2 x 2 + 2 x + 1 )

Теперь найдем корни квадратных трехчленов.

2 x 2 — 2 x + 1 = 0 D = ( — 2 ) 2 — 4 · 2 · 1 = — 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 — D 2 · 2 = 1 2 — i

2 x 2 + 2 x + 1 = 0 D = 2 2 — 4 · 2 · 1 = — 4 x 3 = — 2 + D 2 · 2 = — 1 2 + i x 4 = — 2 — D 2 · 2 = — 1 2 — i

Мы получили четыре комплексных корня.

Ответ: x = 1 2 ± i и x = — 1 2 ± i .

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение возвратного уравнения четвертой степени

Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0

х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:

A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0

Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2 :

A x 2 + 1 x 2 + B x + 1 x + C = 0 A ( y 2 — 2 ) + B y + C = 0 A y 2 + B y + C — 2 A = 0

Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.

Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .

Решение

Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :

2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0

2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0

Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2

2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 — 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0

Решим полученное квадратное уравнение:

D = 2 3 + 2 2 — 4 · 2 · 6 = 12 + 4 6 + 2 — 8 6 = = 12 — 4 6 + 2 = 2 3 — 2 2 y 1 = — 2 3 — 2 + D 2 · 2 = — 2 3 — 2 + 2 3 — 2 4 = — 2 2 y 2 = — 2 3 — 2 — D 2 · 2 = — 2 3 — 2 — 2 3 + 2 4 = — 3

Вернемся к замене: x + 1 x = — 2 2 , x + 1 x = — 3 .

Решим первое уравнение:

x + 1 x = — 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 — 4 · 2 · 2 = — 14 x 1 = — 2 — D 2 · 2 = — 2 4 + i · 14 4 x 2 = — 2 — D 2 · 2 = — 2 4 — i · 14 4

Решим второе уравнение:

x + 1 x = — 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 — 4 · 1 · 1 = — 1 x 3 = — 3 + D 2 = — 3 2 + i · 1 2 x 4 = — 3 — D 2 = — 3 2 — i · 1 2

Ответ: x = — 2 4 ± i · 14 4 и x = — 3 2 ± i · 1 2 .

Видео:ОГЭ №21 Как решать уравнение 4 степени x^4=(3x-10)^2 Формула сокращенного умножен Деление многочленаСкачать

ОГЭ №21 Как решать уравнение 4 степени x^4=(3x-10)^2 Формула сокращенного умножен Деление многочлена

Решение биквадратного уравнения

Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.

Решить биквадратное уравнение 2 x 4 + 5 x 2 — 3 = 0 .

Решение

Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:

2 y 2 + 5 y — 3 = 0 D = 5 2 — 4 · 2 · ( — 3 ) = 49 y 1 = — 5 + D 2 · 2 = — 5 + 7 4 = 1 2 y 2 = — 5 — D 2 · 2 = — 5 — 7 4 = — 3

Следовательно, x 2 = 1 2 или x 2 = — 3 .

Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .

Ответ: x = ± 1 2 и x = ± i · 3 .

Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .

Решение

Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:

16 y 2 + 145 y + 9 = 0 D = 145 2 — 4 · 16 · 9 = 20449 y 1 = — 145 + D 2 · 16 = — 145 + 143 32 = — 1 16 y 2 = — 145 — D 2 · 16 = — 145 — 143 32 = — 9

Поэтому, в силу замены переменной, x 2 = — 1 16 или x 2 = — 9 .

Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .

Видео:Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

Решение уравнений четвертой степени с рациональными корнями

Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Решение уравнений четвертой степени по методу Феррари

Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 , у которых подкоренное выражение является полным квадратом.

Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.

Найти корни уравнения x 4 + 3 x 3 + 3 x 2 — x — 6 = 0 .

Решение

Имеем А = 3 , В = 3 , С = — 1 , D = — 6 . Применим метод Феррари для решения данного уравнения.

Составим и решим кубическое уравнение:
y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 y 3 — 3 y 2 + 21 y — 19 = 0

Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 — 3 · 1 2 + 21 · 1 — 19 = 0 .

Запишем два квадратных уравнения:
x 2 + A 2 x + y 0 2 ± A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0

x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 — 1 2 x — 5 2 = 0

x 2 + 2 x + 3 = 0 или x 2 + x — 2 = 0

Корнями первого уравнения будут x = — 1 ± i · 2 , корнями второго х = 1 и х = — 2 .

Ответ: x 1 , 2 = — 1 ± i 2 , x 3 = 1 , x 4 = — 2 .

Видео:Уравнение четвертой степени из ОГЭ. Решение квадратного уравнения двумя способами.Скачать

Уравнение четвертой степени из ОГЭ. Решение квадратного уравнения двумя способами.

Задание №21 ОГЭ по математике

Видео:ОГЭ 21 задание Решить уравнение четвертой степениСкачать

ОГЭ 21 задание  Решить уравнение четвертой степени

Решение уравнений

В данном задании необходимо решить уравнение степени больше двух — это может быть биквадратное или кубическое уравнение. Ниже мы приводим алгоритмы решения типовых заданий!

Разбор типовых вариантов задания №21 ОГЭ по математике

Демонстрационный вариант ОГЭ 2019

Алгоритм решения:
  1. Определить тип уравнения.
  2. Перенести правую часть уравнения в левую.
  3. Привести уравнение к виду, при котором можно его многочлен слева разложить на множители.
  4. Разложить на множители.
  5. Приравнять каждый множитель к нулю
  6. Решить полученные уравнения.
  7. Записать ответ.
Решение:

1. Уравнение четвертой степени.

2. Перенесем правую часть уравнения в левую:

x 4 — (4x — 5) 2 = 0

3. Уравнение уже приведено к виду, при котором можно его левую часть разложить на множители.

4. Данное уравнение разложим на множители по формуле разности квадратов. Получим:

(х 2 – (4х-5))( х 2 + (4х-5)) = 0, или (х 2 – 4х+5)(х 2 + 4х-5) = 0.

5. Приравняем каждый множитель к нулю:

х 2 – 4х+5 = 0 и х 2 + 4х-5 = 0

6. Решим каждое из уравнений по формулам дискриминанта и корней:

Для первого уравнения:

D = b 2 -4ac = 16-20 = — 4, это означает, что первое уравнение х 2 – 4х+5 = 0 не имеет корней.

Для второго уравнения:

Уравнения четвертой степени в огэ

Определим корни второго уравнения:

Уравнения четвертой степени в огэПолучили два корня: -5; 1.

Первый вариант задания

Уравнения четвертой степени в огэ

Алгоритм решения:
  1. Определить тип уравнения.
  2. Найти делители свободного члена уравнения.
  3. Определить среди делителей один из корней.
  4. Выполнить деление кубического многочлена на выражение х-а, где а – найденный корень.
  5. Записать получившийся в результате деления квадратный трехчлен и составим уравнение.
  6. Решить уравнение.
  7. Записать ответ.
Решение:

1. Перед нами уравнение третьей степени общего типа.

2. Найдем делители свободного члена данного уравнения. Это числа: 1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12;.18; -18; 36; -36.

3. Рассмотрим числа 1; -1; 2; -2; 3; -3. Это наименьшие среди найденных делителей. Подставим их по очереди в уравнение вместо х:

  • для x=1: Уравнения четвертой степени в огэ— не подходит;
  • для x=-1: Уравнения четвертой степени в огэ— не подходит;
  • для х=2: 2 3 +4∙2 2 -9∙2=8=16-18-36=-38≠0 — не подходит;
  • для х=-2: (-2) 3 +4∙(-2) 2 -9∙(-2)-36=-8+16+18-36=-10≠0 – не подходит;
  • для x=3: Уравнения четвертой степени в огэ— подходит.

Мы нашли один корень.

4. Теперь выполним деление кубического многочлена на x-3, воспользовавшись схемой Горнера, имеем:

14-9-36
317120

Искать квадратный трехчлен можно другим способом, выполнив деление многочлена столбиком:

Уравнения четвертой степени в огэ

5. После деления получаем квадратный трехчлен:

Составим квадратное уравнение для вычисления оставшихся двух корней:

6. Решим его с помощью формул корней и дискриминанта

Уравнения четвертой степени в огэ

7. Получили три корня 3; -3; -4.

Второй вариант задания

Уравнения четвертой степени в огэ

Алгоритм решения:
  1. Определить тип уравнения.
  2. Найти делители свободного члена уравнения.
  3. Определить среди делителей один из корней.
  4. Выполнить деление кубического многочлена на выражение х-а, где а – найденный корень.
  5. Записать получившийся в результате деления квадратный трехчлен и составим уравнение.
  6. Решить уравнение.
  7. Записать ответ.

1. Перед нами кубическое уравнение общего вида.

2. Найдем делители свободного члена уравнения. Это числа: 1; -1 и 2; -2.

3. Определим один из корней кубического уравнения среди делителей свободного члена .Для этого подставим каждый из этих делителей вместо x и проверим, какой их них является корнем:

— для x=1: Уравнения четвертой степени в огэ— подходит это и есть один из корней.

4. Теперь выполним деление кубического многочлена на x-1, воспользовавшись схемой Горнера, имеем:

12-1-2
11320

Искать квадратный трехчлен можно другим способом, выполнив деление многочлена столбиком:

Уравнения четвертой степени в огэ

5. Получаем квадратный трехчлен

6. Составим и решим квадратное уравнение для вычисления оставшихся двух корней. Для этого воспользуемся формулами корней квадратного уравнения и дискриминантом.

🎦 Видео

ОГЭ 2021 Решение уравнения четвертой степениСкачать

ОГЭ 2021 Решение уравнения четвертой степени

Подготовка к ОГЭ. Задание 21. Решить уравнение x^4=(2x-15)^2Скачать

Подготовка к ОГЭ. Задание 21. Решить уравнение x^4=(2x-15)^2

9 класс. Алгебра. Решение уравнений четвертой степени. Возвратные уравнения.Скачать

9 класс. Алгебра. Решение уравнений четвертой степени. Возвратные уравнения.

ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбикомСкачать

ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбиком

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Задание 4. СТЕПЕНЬ ОКИСЛЕНИЯ - как легко её определить? | Химия ОГЭ 2023Скачать

Задание 4. СТЕПЕНЬ ОКИСЛЕНИЯ - как легко её определить? | Химия ОГЭ 2023
Поделиться или сохранить к себе: