По этой ссылке вы найдёте полный курс лекций по математике:
Дифференциальным уравнением Бесселя называется уравнение вида где и — действительное число. Это уравнение имеет особую точку z = 0 (коэффициент при старшей производной в (7) обращается в нуль при х = 0). Сравнивая (5) и (7), заключаем, что для уравнения Бесселя так что х = 0 является нулем второго порядка (т = 2) функции Ро(х), нулем первого порядка функции р\(х) и не является нулем функции pi(x) (если v Ф 0).
Поэтому в силу теоремы 17 существует решение уравнения (7) в виде обобщенного степенного ряда где а — характеристический показатель, подлежащий определению. Перепишем выражение (8) в виде Уравнение Функции Бесселя Дифференциальное уравнение Г-функция Эйлера и ее свойства Рекуррентные формулы для функций Бесселя полуцелого индекса Нули бесселевых функций Ортогональность и норма Функции Неймана (Вебера) и найдем производные:
Видео:14. Свойства функции БесселяСкачать
Подставим эти выражения в уравнение (7), и приравнивая нулю коэффициенты при х в степени получим систему уравнений то из первого уравнения (9) следует, что , или Теперь из второго уравнения (9) будем иметь Рассмотрим сначала случай . Перепишем уравнение системы (9) в виде откуда получаем рекуррентную формулу для определения ак через ак-2′. ) Учитывая, что получаем отсюда а3 = 0 и вообще С другой стороны, каждый четный коэффициент может быть выражен через предыдущий по формуле Последовательное применение этой формулы позволяет найти выражение а2т через ао:
Подставим найденные значения коэффициентов в формулу (8), (10) Нетрудно проверить, что ряд в правой части (10) сходится на полуоси х > 0 и определяет там функцию (я) — частное решение уравнения Бесселя. Рассмотрим теперь второй случай, когда а = -и. Если v не равно положительному целому числу, то можно написать второе частное решение, которое получается из выражения (10) заменой v на -v (в уравнение (7) v входит четным образом), («О (
Если и равно целому положительному числу, то решение (101) теряет силу, так как начиная с некоторого числа один из множителей в знаменателе членов разложения (1(У) будет равен нулю.) Ряд в правой части (10′) также сходится при всех значениях х > 0. Решения yi (ж) и у2(х) линейно независимы. Действительно, их отношение не является постоянным. 12.2. Г-функция Эйлера и ее свойства Для дальнейшего нам понадобятся некоторые свойства Г -функции Эйлера.
Она определяется следующим образом: Интегрированием по частям получаем основное функциональное уравнение для Г-функции: Так как и вообще Можно показать еще, что С помощью функционального уравнения (11) можно определить гамма-функцию для отрицательных значений аргумента. Записав уравнение (11) в виде Г(р) = , замечаем, что для малых р выполняется соотношение Г(р)
£. Аналогично, если m — положительное целое число, то для значений р, близких к числу -ш, имеем Можно показать, что Г(р) Ф 0 при всяком р, поэтому функция щ будет непрерывной для всех значений р, если положить Возвратимся к решению уравнения Бесселя (7). Коэффициент oq до сих пор оставался произвольным.
Если v Ф -п, где п > 0 — целое число, то, полагая найдем Подставляя это выражение для коэффициентов в (9), получаем Ряд (12) определяет функцию которая является решением уравнения Бесселя и называется функцией Бесселя первого рода и -го порядка.
Ряд отвечает случаю а = -и (и — нецелое) и определяет второе решение уравнения (7), линейно независимое с функцией Итак, если v не равно целому числу (, то функции Jv(x) и J-v(x) образуют фундаментальную систему решений уравнения Бесселя (7) и его общее решение имеет в этом случае вид При v целом выполняется линейная зависимость В самом деле, имеем Первые п членов ряда исчезают, так как а = 1. Введя обозначение т = к + п, находим Выпишем ряды для функций Бесселя первого рода нулевого (п = 0) и первого (n = 1) порядков: Функции Jb(x) и J\ (ж) (рис. 4) часто встречаются в приложениях, и для них имеются подробные таблицы. 12.4.
Видео:Дифференциальное уравнение БесселяСкачать
Рекуррентные формулы для функций Бесселя Используя формулу непосредственно проверкой убеждаемся в том, что Точно таким же вычислением находим Раскрывая в левых частях формул (15) и (16) производные произведений, получаем соответственно равенства Складывая и вычитая (17) и (18), получим две важные рекуррентные формулы: Формула (19) показывает, что производные функций Бесселя выражаются через бесселевы же функции.
Аналогично, при получаем Обе эти формулы можно записать в виде Уравнение Функции Бесселя Дифференциальное уравнение Г-функция Эйлера и ее свойства Рекуррентные формулы для функций Бесселя полуцелого индекса Нули бесселевых функций Ортогональность и норма Функции Неймана (Вебера) 12.6. Нули бесселевых функций При решении многих прикладных вопросов необходимо иметь представление о распределении нулей функций Бесселя.
Возможно вам будут полезны данные страницы:
Нули функций и J-x^x) совпадают с нулями sin х и cos х соответственно. Можно показать, что для больших значений х имеет место асимптотическое представление1* (сравните справедливое как для целых, так и для дробных v. Формула (22) показывает, как ведет себя функция Бесселя при возрастании аргумента. Это колеблющаяся функция, бесчисленное множество раз обращающаяся в нуль, причем амплитуда колебаний стремится к нулю при х —» +оо. Распределение нулей функции Бесселя с целым положительным индексом, т. е. корней уравнения устанавливается следующей теоремой. Теорема 18.
Функция не имеет комплексных нулей, но имеет бесконечное множество действительных нулей, расположенных симметрично относительно точки х = 0, которая в случае п = 1,2. принадлежит к их числу. Все нули функции простые за исключением точки х = 0, которая при п = 1,2. является нулем кратности п соответственно. 12.7. Ортогональность и норма функций Бесселя Ортогональность функций Бесселя Рассмотрим дифференциальное уравнение где А — некоторый числовой параметр, отличный от нуля. Нетрудно проверить, что уравнению (23) удовлетворяет функция Бесселя Jv(\x).
Видео:Дифференциальные уравнения | уравнение Бесселя и подход к его решениюСкачать
Перепишем уравнение (23) в виде и обозначим — какие-либо значения параметра А. Тогда будем иметь тождества Умножая первое тождество на ), второе — ) и вычитая одно из другого, получим Умножив все члены последнего тождества на ж, замечаем, что его можно записать в виде Интегрируя последнее тождество по ж в пределах от 0 до 1, будем иметь равенства (25) следует, что если Ai, Аг есть нули функции то левая часть (25), а значит, и правая, равны нулю, так что Это означает, согласно определению, что функции ортогональны с весом р(х) = х на отрезке [0,1). Бесселева функция Jv Если А,, Аг являются корнями уравнения то в этом случае при из () также имеем Следовательно, система функций ,где Ап — корни уравнения Jl(x) = О, ортогональна на отрезке [0, 1] с весом р 3. Пусть А|, Аг являются корнями уравнения где h — некоторое фиксированное число. Уравнение (28) встречается в математической физике и при v > -1 имеет бесконечное множество положительных корней, но не имеет комплексных корней (исключая случай , когда есть два чисто мнимых корня). в виде убеждаемся в ортогональности бесселевых функций по нулям линейной комбинации хJu(x) — hji,(x) = 0 функции Бесселя и ее производной: где — корни уравнения (28). Норма функций Бесселя Величина 12.8. Функции Неймана (Вебера) Всякое нетривиальное решение уравнения Бесселя называют цилиндрической функцией. При v нецелом функции образуют функциональную систему решений уравнения Бесселя (7). При и = п — целом имеет место линейная зависимость Чтобы к решению Jr\x) подыскать такое, которое ему не пропорционально, поступаем так: при нецелом и составляем функцию Она является линейной комбинацией решений линейного однородного уравнения (7) и, следовательно, сама есть решение этого уравнения. Переходя в (30) к пределу при v —» п и пользуясь правилом Лопиталя, будем иметь Характерное свойство функций J/y\(х) (функций Бесселя 2-го рода) — наличие особенности в начале координат (рис. 5) Найденное решение уравнения Бес- селя (7) при v = п вместе с Jn(x) составляет фундаментальную систему решений уравнения Уравнение Функции Бесселя Дифференциальное уравнение Г-функция Эйлера и ее свойства Рекуррентные формулы для функций Бесселя полуцелого индекса Нули бесселевых функций Ортогональность и норма Функции Неймана (Вебера) Функцию .Л£(ж) называют также функцией Неймана или функцией Вебера. При достаточно больших х Таким образом, на больших расстояниях от начала координат цилиндрические функции 1 -го и 2-го рода относятся друг к другу как косинус и синус, но затухают с ростом х благодаря множителю Эти функции удобны для представления стоячих цилиндрических волн. По аналогии с показательными функциями (формулы Эйлера) можно построить линейную комбинацию функций Jv(x) и дающую функции, связанные с бе- гущими волнами. Так мы приходим к бесселевым функциям 3-го рода или функциям Ханкеля, определяемым соотношениями Упражнения Найдите общее решение уравнений: Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать Найдите решение задачи Коши: Проинтегрируйте уравнения, найдя, где указано, частные решения: Найдите общие решения следующих линейных неоднородных дифференциальных уравне- Виды частных решений неоднородных линейных уравнений с постоянными коэффициентами для различных правых частей Правая часть*) дифференциальных уравнений Корни характеристического уравнения Виды частного решения 1. Число 0 не является корнем характеристического уравнения Число 0 — корень характеристического уравнения кратности г 2. Число а не является корнем характеристического уравнения Число а является корнем характеристического уравнения кратности г 3. Числа ±»’/3 не являются корнями характеристического уравнения Числа ±«/9 являются корнями характеристического уравнения кратности г 4. Числа а ± i/З не являются корнями характеристического уравнения Числа a ± i/З являются корнями характеристического уравнения кратности г *) Первые три вида правых частей являются частными случаями четвертого. Укажите вид частных решений следующих линейных неоднородных уравнений: Методом вариации постоянных проинтегрируйте следующие уравнения: Проинтегрируйте следующие уравнения Эйлера: Ответы Присылайте задания в любое время дня и ночи в ➔ Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института. Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды. Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.Записав левую часть равенства (25)
🎬 Видео
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
13. Функция Бесселя (старое занятие)Скачать
Боголюбов А. Н. - Методы математической физики - Уравнение БесселяСкачать
Интегральное приключение: вычеты ФКП, ряды и функция БесселяСкачать
Дифференциальные уравнения | решаем уравнение Бесселя | 4Скачать
9. Метод вариации произвольной постоянной ( метод Лагранжа ). Линейные дифференциальные уравнения.Скачать
07.11.2023 Лекция 16. Уравнение Бесселя и функции Бесселя. Эквивалентность норм в конечномерных прСкачать
10. Уравнения БернуллиСкачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать
Интеграл с функцией Бесселя и трюками с рядамиСкачать
Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать
Общее, частное и особое решение ДУ. ПримерСкачать