Уравнения 9 класс огэ с ответами

Задание №9 ОГЭ по математике

В девятом задании модуля алгебра ОГЭ по математике нам предлагают решить уравнения. Это могут быть как линейные уравнения, которые решаются переносом всех известных членов в одну сторону, а неизвестных (x) в другую, так и квадратные уравнения, которые в свою очередь могут быть полными и неполными. Судя по материалам ОГЭ и практике проведения экзамена, наиболее вероятным заданием может быть решение линейного или квадратного уравнения. Тем не менее мы рассмотрим задания по всей этой тематике. Сложность заданий как всегда возрастает от задания к заданию. Ответом в задании №9 является целое число или конечная десятичная дробь.

Теория к заданию №9

Ниже я привел теорию по решениям линейных и квадратных уравнений:

Схема решения, правила и алгоритм действий при решении линейного уравнения:

Уравнения 9 класс огэ с ответами

Схема решения, правила и порядок действий при решении квадратного уравнения:

Уравнения 9 класс огэ с ответами

В трех типовых вариантах я разобрал данные случаи – в первом варианте вы найдете подробные указания по решению линейных уравнений, во втором разобран пример решения неполного квадратного уравнения, а в третьем – решение полного квадратного уравнения с вычислением дискриминанта.

Найдите корень уравнения:

Данное уравнение представляет собой обыкновенное уравнение первой степени и решается переносом всех известных частей в правую часть, оставив x слева.

Для начала следует раскрыть скобки: 10x – 90 = 7

Затем переносим 90 в правую часть (не забываем поменять знак):

Затем делим обе части на 10:

pазбирался: Даниил Романович | обсудить разбор | оценить

Это неполное квадратное уравнение, в котором не обязательно вычислять дискриминант, а достаточно вынести x за скобку:

Произведение множителей тогда равно нулю, когда один из множителей равен нолю:

Так как в ответе просят указать наименьший корень, то это -4.

pазбирался: Даниил Романович | обсудить разбор | оценить

Уравнение является полным квадратным уравнением, поэтому классическим вариантом решения является вычисление дискриминанта. Но в данном случае можно заметить, что все множители кратны двум, поэтому можно все уравнение разделить на 2 для удобства вычисления:

Далее вычисляем дискриминант:

x = (- b — √D) / 2a = (5 — 3 )/ 2 •4 = 0,25

x = (- b + √D) / 2a = (5 + 3 )/ 2 •4 = 1

Так как нам нужно выбрать меньший из корней по условию, то выбираем 0,25

pазбирался: Даниил Романович | обсудить разбор | оценить

В данной задаче нам предстоит решить линейное уравнение. Подход к решению таких уравнений достаточно простой – всё, что известно переносим в правую часть, всё, что неизвестно – оставляем в левой. Далее выполняем необходимое арифметическое действие.

Переносим 9 в правую часть (не забываем про смену знака):

7х = 40 + 9, что эквивалентно

х в нашем случае – это неизвестный множитель, следовательно, чтобы его найти, делим произведение на известный множитель:

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите корень уравнения:Уравнения 9 класс огэ с ответами

режде всего, исключим

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Далее решаем уравнение. Представляем число 2 в уравнении справа в виде дроби 2/1. Уравнение получает

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Выполним умножение в левой части уравнения и раскроем скобки справа:

Поменяем местами левую и правую части уравнения, чтобы оно приняло привычный вид:

Переносим 12 из левой части в правую:

ОДЗ это значение не исключает, поэтому оно является искомым результатом.Ответ: -5,5

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите корень уравнения:Уравнения 9 класс огэ с ответами

Обе части уравнения приводим к единому знаменателю 12: Уравнения 9 класс огэ с ответамиТ.к. знаменатели в левой и правой частях уравнения одинаковы, не равны нулю и не содержат переменных, то их можно сократить (т.е. ими можно пренебречь). Тогда получаем: 11х=44 х=44:11 х=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Имеем линейное уравнение:

Следовательно, начинаем решение с переноса слагаемых (с переменной влево, без переменной – вправо): 3х + 7х= – 5 – 2, не забывая изменять знак у слагаемых, которые переносим. Теперь приводим подобные в каждой части, получаем 10х= –7.

Находим неизвестный множитель делением произведения –7 на известный множитель 10, получаем –0,7.

Запись решения выглядит так:

pазбирался: Даниил Романович | обсудить разбор | оценить

Видео:ОГЭ для НОЛИКОВ, Уравнения N-9Скачать

ОГЭ для НОЛИКОВ, Уравнения N-9

Задачник с ответами для подготовки к ОГЭ по математике ( задание № 9 , уравнения и системы уравнений)
материал для подготовки к егэ (гиа) по алгебре (9 класс)

Уравнения 9 класс огэ с ответами

Данная система заданий позволяет отработать навыки по решению задания № 9 ОГЭ по математике. Для проверки в конце сборника публикуются ответы.

Видео:Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!

Скачать:

ВложениеРазмер
oge_po_matematike_zadanie_9.pdf1.19 МБ

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Видео:Задание №9 на ОГЭ. Как решать уравнения? Какие типы будут?Скачать

Задание №9 на ОГЭ. Как решать уравнения? Какие типы будут?

По теме: методические разработки, презентации и конспекты

Система упражнений по теме: «Уравнения и системы уравнений».

В данном пособии предложена система упражнений с решениями по теме : «Уравнения и системы уравнений» для учащихся старшей школы.

Уравнения и системы уравнений

Элективный курс по алгебре в 9 классе по теме: «Уравнения и системы уравнений».

Уравнения 9 класс огэ с ответами

8 класс урок-зачёт по теме «Линейные уравнения и системы уравнений»

рассмотрены разные типы текстовых задач, которые решаются с помощью линейных уравнений и систем уравнений.

Уравнения 9 класс огэ с ответами

Урок-зачет в 10 классе по теме «Тригонометрические уравнения, неравенства, системы уравнений»

Цель урока: Проверить знания и умение применений формул для решения тригонометрических уравнений.Вид работы: «Смотр знаний», состоящий из 5 этапов, проводится в течение двух уроков. За каждый эт.

Уравнения 9 класс огэ с ответами

Программа прикладного курса по алгебре «Уравнения и системы уравнений»

Программа прикладного курса по алгебре «Уравнения и системы уравнений» для 11 класса.

Тест по алгебре для 9 класса с углубленным изучением математики по теме «СИСТЕМЫ УРАВНЕНИЙ И СИСТЕМЫ НЕРАВЕНСТВ С ДВУМЯ ПЕРЕМЕННЫМИ» .

Тест по алгебре для 9 класса с углубленным изучением математики по теме «СИСТЕМЫ УРАВНЕНИЙ И СИСТЕМЫ НЕРАВЕНСТВ С ДВУМЯ ПЕРЕМЕННЫМИ» .Задания теста соответствуют содержанию учебника «Алгебра. 9 .

Уравнения и системы уравнений. Рациональные, иррациональные, показательные и тригонометрические уравнения и системы. Равносильность уравнений, неравенств, систем.

Уравнения и системы уравнений. Рациональные, иррациональные, показательные и тригонометрические уравнения и системы. Равносильность уравнений, неравенств, систем.

Видео:Задание №20. Уравнение 2 часть ОГЭ по математике 2023 | УмскулСкачать

Задание №20. Уравнение 2 часть ОГЭ по математике 2023 | Умскул

Алгебра. Урок 4. Уравнения, системы уравнений

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

Уравнения 9 класс огэ с ответами

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Линейные уравнения

Видео:Разбор реального варианта ОГЭ по математике 2024 на 5 за часСкачать

Разбор реального варианта ОГЭ по математике 2024 на 5 за час

Линейные уравнения

Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

Примеры линейных уравнений:

  1. 3 x = 2
  1. 2 7 x = − 5

Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

Примеры решения линейных уравнений:

  1. 2 x + 1 = 2 ( x − 3 ) + 8

Это линейное уравнение, так как переменная стоит в первое степени.

Попробуем преобразовать его к виду a x = b :

Для начала раскроем скобки:

2 x + 1 = 4 x − 6 + 8

В левую часть переносятся все слагаемые с x , в правую – числа:

Теперь поделим левую и правую часть на число ( -2 ) :

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

x 2 + 3 x − 8 = x − 1

Это уравнение не является линейным уравнением.

Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

  1. 2 x − 4 = 2 ( x − 2 )

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 2 x = − 4 + 4

И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 4 = 2 x − 16

2 x − 2 x = − 16 + 4

В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Квадратные уравнения

Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

Алгоритм решения квадратного уравнения:

  1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
  2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
  3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
  4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
  5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
  6. Если D 0, решений нет: x ∈ ∅

Примеры решения квадратного уравнения:

  1. − x 2 + 6 x + 7 = 0

a = − 1, b = 6, c = 7

D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

D > 0 – будет два различных корня:

x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

Ответ: x 1 = − 1, x 2 = 7

a = − 1, b = 4, c = − 4

D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

D = 0 – будет один корень:

x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

a = 2, b = − 7, c = 10

D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

D 0 – решений нет.

Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

Видео:Все типы задания 6 | Математика ОГЭ 2023 | УмскулСкачать

Все типы задания 6 | Математика ОГЭ 2023 | Умскул

Разложение квадратного трехчлена на множители

Квадратный трехчлен можно разложить на множители следующим образом:

a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

где a – число, коэффициент перед старшим коэффициентом,

x – переменная (то есть буква),

x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

Если квадратное уравнение имеет только один корень , то разложение выглядит так:

a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

Примеры разложения квадратного трехчлена на множители:

  1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

− x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

  1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

− x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

  • c = 0 ⇒ a x 2 + b x = x ( a x + b )
  • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

Видео:Как сдать ОГЭ по математике за 4 минуты? | УмскулСкачать

Как сдать ОГЭ по математике за 4 минуты? | Умскул

Дробно рациональные уравнения

Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

ОДЗ – область допустимых значений переменной.

В выражении вида f ( x ) g ( x ) = 0

ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

Алгоритм решения дробно рационального уравнения:

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .
  2. Выписать ОДЗ: g ( x ) ≠ 0.
  3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
  4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Пример решения дробного рационального уравнения:

Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

Решение:

Будем действовать в соответствии с алгоритмом.

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .

Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

x 2 − 4 2 − x − 1 2 − x = 0

x 2 − 4 2 − x − 2 − x 2 − x = 0

x 2 − 4 − ( 2 − x ) 2 − x = 0

x 2 − 4 − 2 + x 2 − x = 0

x 2 + x − 6 2 − x = 0

Первый шаг алгоритма выполнен успешно.

Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

  1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

a = 1, b = 1, c = − 6

D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

D > 0 – будет два различных корня.

x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

  1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Корни, полученные на предыдущем шаге:

Значит, в ответ идет только один корень, x = − 3.

Видео:Разбор реального варианта ОГЭ по математике 2023 | Математика ОГЭ 2023 | УмскулСкачать

Разбор реального варианта ОГЭ по математике 2023 | Математика ОГЭ 2023 | Умскул

Системы уравнений

Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

Пример системы уравнений

Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

Существует два метода решений систем линейных уравнений:

  1. Метод подстановки.
  2. Метод сложения.

Алгоритм решения системы уравнений методом подстановки:

  1. Выразить из любого уравнения одну переменную через другую.
  2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  3. Решить уравнение с одной неизвестной.
  4. Найти оставшуюся неизвестную.

Решить систему уравнений методом подстановки

Решение:

  1. Выразить из любого уравнения одну переменную через другую.
  1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  1. Решить уравнение с одной неизвестной.

3 ( 8 − 2 y ) − y = − 4

y = − 28 − 7 = 28 7 = 4

  1. Найти оставшуюся неизвестную.

x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

Ответ можно записать одним из трех способов:

Решение системы уравнений методом сложения.

Метод сложения основывается на следующем свойстве:

Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

Решить систему уравнений методом сложения

Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

− 3 x − 6 y + 3 x − y = − 24 − 4

y = − 28 − 7 = 28 7 = 4

Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

Ответ можно записать одним из трех способов:

Видео:ОГЭ по математике. Решаем уравнения | МатематикаСкачать

ОГЭ по математике. Решаем уравнения | Математика

Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

📽️ Видео

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

ВСЕ ТИПЫ 20 ЗАДАНИЕ 2 ЧАСТЬ ОГЭ МАТЕМАТИКА 2023Скачать

ВСЕ ТИПЫ 20 ЗАДАНИЕ 2 ЧАСТЬ ОГЭ МАТЕМАТИКА 2023

Задание 9 ОГЭ 2023 математика | Решаем уравненияСкачать

Задание 9 ОГЭ 2023 математика | Решаем уравнения

Как решать уравнения на ОГЭ 2021? / Подробный разбор всех видов уравнений на ОГЭ по математикеСкачать

Как решать уравнения на ОГЭ 2021? / Подробный разбор всех видов уравнений на ОГЭ по математике

Разбор 1 вариант нового сборника Ященко Листы ОГЭ по математике 2024Скачать

Разбор 1 вариант нового сборника Ященко Листы ОГЭ по математике 2024

Проверь свои знания по математике за 11 классСкачать

Проверь свои знания по математике за 11 класс

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnlineСкачать

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnline

Линейные уравнения в ОГЭ | Математика ОГЭ 2022 | УмскулСкачать

Линейные уравнения в ОГЭ | Математика ОГЭ 2022 | Умскул

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Не сдал ОГЭ Устное Собеседование shorts #shortsСкачать

Не сдал ОГЭ Устное Собеседование shorts #shorts
Поделиться или сохранить к себе: