Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

Мерзляк 5 класс — § 10. Уравнение

Вопросы к параграфу

1. Какое число называют корнем (решением) уравнения? — Корнем (решением) уравнения называют число, которое при подстановке вместо буквы обращает уравнение в верное числовое равенство.

2. Что значит решить уравнение? — Это значит найти все его корни или убедиться, что их вообще нет.

3. Как найти неизвестное слагаемое? — Надо из суммы вычесть известное слагаемое.

4. Как найти неизвестное уменьшаемое? — Надо к разности прибавить вычитаемое.

5. Как найти неизвестное вычитаемое? — Надо из вычитаемого вычесть разность.

Решаем устно

1. Найдите значение выражения 53 + х:

1. если х = 29, то 53 + х = 53 + 29 = 82

2. если х = 61, то 53 + х = 53 + 61 = 114

2. Найдите значение выражения 12y:

1. если: у = 7, то 12y = 12 • 7 = 84

2. если: у = 20, то 12y = 12 • 20 = 240

3. Найдите по формуле пути s = 50t расстояние (в метрах), которое проходит Петя:

1) за 4 мин: s = 50t = 50 • 4 = 200 метров

2) за 10 мин: s = 50t = 50 • 10 = 500 метров

Что означает числовой множитель в этой формуле? Числовой множитель 50 обозначает скорость движения Пети (м/мин).

4. Число а на 10 больше, чем число b. В виде каких из следующих равенств это можно записать:

  1. а + b = 10 — нельзя записать
  2. а — b = 10 — можно записать
  3. b — а = 10 — нельзя записать
  4. а — 10 = b — можно записать
  5. b + 10 = а — можно записать

Ответ: можно записать в виде равенств: а — b = 10; а — 10 = b; b + 10 = а.

5. Найдите все натуральные значения а, при которых выражение 20 : а принимает натуральные значения.

  • если а = 1, то 20 : 1 = 20 — натуральное число
  • если а = 2, то 20 : 2 = 10 — натуральное число
  • если а = 4, то 20 : 4 = 5 — натуральное число
  • если а = 5, то 20 : 5 = 4 — натуральное число
  • если а = 10, то 20 : 10 = 2 — натуральное число
  • если а = 20, то 20 : 20 = 1 — натуральное число

Ответ: при а = 1, 2, 4, 5 , 10 или 20.

6. На одну чашу весов поставили несколько гирь по 2 кг, а на другую — по 3 кг, после чего весы пришли в равновесие. Сколько поставили гирь каждого вида, если всего их поставили 10?

На одну чашу весов надо поставить 6 гирь по 2 кг, а на другую — 4 гири по 3 кг.

Для решения использовано 10 гирь.

Упражнения

267. Какое из чисел 3, 12, 14 является корнем уравнения:

1) х + 16 = 28

  • если х = 3, то 3 + 16 = 19. Так как 19 ≠ 28, то число 3 не является корнем уравнения;
  • если х = 12, то 12 + 16 = 28. Так как 28 = 28, то число 12 является корнем уравнения;
  • если х = 14, то 14 + 16 = 30. Так как 30 ≠ 28, то число 14 не является корнем уравнения.

Ответ: корнем уравнения является число 12.

2) 4х — 5 = 7

  • если х = 3, то 4 • 3 — 5 = 12 — 5 = 7. Так как 7 = 7, то число 3 является корнем уравнения;
  • если х = 12, то 4 • 12 — 5 = 48 — 5 = 43. Так как 43 ≠ 7, то число 12 не является корнем уравнения;
  • если х = 14, то 4 • 14 — 5 = 56 — 5 = 51. Так как 51 ≠ 7, то число 14 не является корнем уравнения.

Ответ: корнем уравнения является число 3.

268. Какое из чисел 3, 12, 14 является корнем уравнения:

1) 234 — y = 220

  • если y = 3, то 234 — 3 = 231. Так как 231 ≠ 220, то число 3 не является корнем уравнения;
  • если y = 12, то 234 — 12 = 222. Так как 222 ≠ 220, то число 12 не является корнем уравнения;
  • если y = 14, то 234 — 14 = 220. Так как 220 = 220, то число 14 является корнем уравнения.

Ответ: корнем уравнения является число 14.

2) 72 : b + 13 = 19

  • если b = 3, то 72: 3 + 13 = 24 + 13 = 37. Так как 37 ≠ 19, то число 3 не является корнем уравнения;
  • если b = 12, то 72 : 12 + 13 = 6 + 13 = 19. Так как 19 = 19, то число 12 является корнем уравнения;
  • если b = 12, то 72 : 12 + 13 = 5 Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами+ 13 = 18 Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами. Так как 18 Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами≠ 19, то число 14 не является корнем уравнения.

Ответ: корнем уравнения является число 12.

269. Решите уравнение:

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

270. Решите уравнение:

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

271. Решите уравнение:

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

272. Решите уравнение:

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

273. Решите с помощью уравнения задачу.

1) Оксана задумала число. Если к этому числу прибавить 43 и полученную сумму вычесть из числа 96, то получим число 25. Какое число задумала Оксана?

Пусть задуманное Оксаной число равно x. Тогда можно составить уравнение:

96 — (х + 43) = 25
х + 43 = 96 — 25
х + 43 = 71
х = 71 — 43
х = 28

Ответ: Оксана задумала число 28.

2) У Буратино было 74 сольдо. После того как он купил себе учебники для школы, папа Карло дал ему 25 сольдо. Тогда у Буратино стало 68 сольдо. Сколько сольдо потратил Буратино на учебники?

Пусть Буратино потратил на учебники х сольдо. Тогда можно составить уравнение:

(74 — х) + 25 = 68
74 — х = 68 — 25
74 — х = 43
х = 74 — 43
х = 31

Ответ: Буратино потратил на учебники х сольдо.

274. Решите с помощью уравнения задачу.

Ваня задумал число. Если к этому числу прибавить 27 и из полученной суммы вычесть 14, то получим число 36. Какое число задумал Ваня?

Пусть задуманное Ваней число равно х. Тогда можно составить уравнение:

(х + 27) — 14 = 36
х + 27 = 36 + 14
х + 27 = 50
х = 50 — 27
х = 23

Ответ: Ваня задумал число 23.

275. Какое число надо подставить вместо а, чтобы корнем уравнения:

1) (x + а) — 7 = 42 было число 22

Подставим вместо х число 22 — корень уравнения, затем найдём неизвестное а:

(22 + а) — 7 = 42
22 + а = 42 + 7
22 + а = 49
а = 49 — 22
а = 27

Ответ: вместо а надо подставить число 27.

2) (а — x) + 4 = 15 было число 3

Подставим вместо х число 3 — корень уравнения, затем найдём неизвестное а:

(а — 3) + 4 = 15
а — 3 = 15 — 4
а — 3 = 11
а = 11 + 3
а = 14

Ответ: вместо а надо подставить число 14.

276. Какое число надо подставить вместо а, чтобы корнем уравнения:

1) (х — 7) + а = 23 было число 9

Подставим вместо х число 9 — корень уравнения, затем найдём неизвестное а:

(9 — 7) + а = 23
2 + а = 23
а = 23 — 2
а = 21

Ответ: вместо а надо подставить число 21.

2) (11 + х) + 101 = а было число 5

Подставим вместо х число 5 — корень уравнения, затем найдём неизвестное а:

(11 + 5) + 101 = а
16 + 101 = а
117 = а
а = 117

Ответ: вместо а надо подставить число 117.

Упражнения для повторения

277. Лиза была в школе с 8 ч 15 мин до 15 ч 20 мин. Вечером она пошла на тренировку. Там она провела на 5 ч 40 мин меньше времени, чем в школе. Сколько времени Лиза была на тренировке?

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

1) 15 ч 20 мин — 8 ч 15 мин = 7 ч 5 мин — Лиза провела в школе.

2) 7 ч 5 мин — 5 ч 40 мин = 6 ч 65 мин — 5 ч 40 мин = 1ч 25 мин — Лиа провела на тренировке.

Ответ: 1 ч 25 мин.

278. Начертите отрезок длиной 12 см. Над одним концом отрезка напишите число 0, а над другим — 480. Поделите отрезок на шесть равных частей. Отметьте на полученной шкале числа 40, 100, 280, 360, 420.

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

279. Можно ли, имея 900 р., купить 3 кг бананов по 65 р. за 1 кг, 2 кг мандаринов по 130 р. за 1 кг и 4 кг апельсинов по 95 р. за 1 кг?

Посчитаем общую стоимость предполагаемой покупки:

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

1) 65 • 3 = 195 (рублей) — потребуется на покупку бананов.

2) 130 • 2 = 260 (рублей) — потребуется на покупку мандаринов.

3) 95 • 4 = 380 (рублей) — потребуется на покупку апельсинов.

4) 195 + 260 + 380 = 835 (рублей) — будет стоить весь набор продуктов.

Сравним предполагаемую стоимость покупки с имеющейся суммой денег:

Значит купить все эти продукты на 900 рублей можно.

Задача от мудрой совы

280. В трёх ящичках лежат шары: в первом ящичке — два белых, во втором — два чёрных, в третьем — белый и чёрный. На ящички наклеены этикетки ББ, ЧЧ и БЧ так, что содержимое каждого из них не соответствует этикетке. Как, вынув один шар, узнать, что в каком ящичке лежит?

Этикетки на ящиках не соответствуют их содержимому. Значит в ящике БЧ не может лежать два разноцветных шарика. Там будет либо 2 белых шарика, либо два чёрных шарика. Вытащим один шар из ящика с этикеткой БЧ:

  • если вытащен белый шар, то значит в ящике:
    • БЧ — 2 белых шара;
    • ББ — 2 чёрных шара;
    • ЧЧ — 1 белый и 1 чёрный шар.
  • если вытащен чёрный шар, то значит в ящике:
    • БЧ — 2 чёрных шара;
    • ББ — 1 белый и 1 чёрный шар;
    • ЧЧ — 2 белых шара.

Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

Ответ: надо вытащить шар из ящика с надписью БЧ.

Видео:Уравнения. 5 классСкачать

Уравнения. 5 класс

Самостоятельные работы Математика 5 Мерзляк

Самостоятельные работы Математика 5 Мерзляк — это цитаты самостоятельных работ из пособия для учащихся «Математика 5 класс. Дидактические материалы / А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир — М.: Вентана-Граф» (Алгоритм успеха), которое используется в комплекте с учебником «Математика 5 класс» авторов: Мерзляк и др.

Цитаты из пособия указаны в учебных целях. При постоянном использовании самостоятельных работ в 5 классе рекомендуем купить книгу: Мерзляк, Рабинович, Полонский: Математика. 5 класс. Дидактические материалы. ФГОС.

Самостоятельные работы по математике
(УМК Мерзляк) 5 класс

СР-1. Упражнения для повторения материала 1–4 классов

СР-2. Ряд натуральных чисел. Десятичная запись натуральных чисел

СР-3. Отрезок. Длина отрезка

СР-5. Шкала. Координатный луч

СР-6. Сравнение натуральных чисел

СР-20. Площадь. Площадь прямоугольника

  1. Одна сторона прямоугольника равна 18 см, а соседняя сторона на 12 см длиннее неё. Вычислите периметр и площадь прямоугольника.
  2. Периметр прямоугольника равен 154 дм, одна из его сторон – 43 дм. Найдите соседнюю сторону и площадь прямоугольника.
  3. Периметр прямоугольника равен 5 м 6 дм, одна из его сторон в 6 раз больше соседней стороны. Найдите площадь прямоугольника.
  4. Найдите площадь квадрата, периметр которого равен 156 м.
  5. Вычислите периметр и площадь фигуры, изображённой на рисунке 18 (размеры даны в сантиметрах).
  6. Выразите: 1) в квадратных метрах: 7 га; 6 га 14 а; 24 а; 2) в гектарах: 340 000 м2; 56 км2; 4 км 217 га; 3) в арах: 22 га; 7 га 14 а; 47 500 м2; 3 км 212 га 7 а; 4) в гектарах и арах: 640 а; 58 400 м2.
  7. Поле прямоугольной формы имеет площадь 32 га, его длина – 800 м. Вычислите периметр поля.

СР-21. Прямоугольный параллелепипед. Пирамида

  1. На рисунке 19 изображён прямоугольный параллелепипед ABCDEFKP. Укажите: 1) все рёбра параллелепипеда; 2) все грани параллелепипеда; 3) рёбра, равные ребру АВ; 4) грани, которым принадлежит вершина Е; 5) грани, для которых ребро PD является общим; 6) грань, равную грани AEFB. Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами
  2. Измерения прямоугольного параллелепипеда равны 15 см, 24 см и 18 см. Найдите: 1) сумму длин всех его рёбер; 2) площадь поверхности параллелепипеда.
  3. Ребро куба равно 12 дм. Найдите: 1) сумму длин всех рёбер куба; 2) площадь его поверхности.
  4. На рисунке 20 изображена пирамида MABCDE. Укажите: 1) основание пирамиды; 2) вершину пирамиды; 3) боковые грани пирамиды; 4) боковые рёбра пирамиды; 5) рёбра основания пирамиды; 6) боковые грани, для которых ребро ME является общим.
  5. На рисунке 21 изображена пирамида SABCD, боковые грани которой – равносторонние треугольники со стороной, равной 7 см. Чему равна сумма длин всех рёбер пирамиды? Уравнения 5 класс по математике для тренировки со скобками мерзляк с ответами

СР-22. Объём прямоугольного параллелепипеда

  1. Вычислите объём прямоугольного параллелепипеда, измерения которого равны 5 м, 4 м и 6 м.
  2. Ширина прямоугольного параллелепипеда равна 8 дм, длина – на 4 дм больше ширины, а высота – в 3 раза меньше длины. Найдите объём параллелепипеда.
  3. Пользуясь формулой объёма прямоугольного параллелепипеда V = SH, вычислите: 1) объём V, если S = 14 м 2 , Н = 3 м; 2) площадь S основания, если V = 216 см 3 , Н = 12 см; 3) высоту Н, если V = 72 дм 3 , S = 18 дм 2 .
  4. Найдите объём куба, ребро которого равно 4 см.
  5. Выразите: 1) в кубических сантиметрах: 7 дм 3 ; 4 дм 3 , 126 см 3 ; 3 м 3 , 5 дм 3 ; 2) в кубических дециметрах: 6 м 3 ; 4 000 см 3 ; 17 м 3 ; 2 дм 3 .

СР-23. Комбинаторные задачи

  1. Укажите все трёхзначные числа, для записи которых используются только цифры (цифры не могут повторяться): 1) 1, 2 и 3; 2) 0, 1 и 2.
  2. Сколько различных двузначных чисел можно составить из цифр 0, 1 и 2 (цифры могут повторяться)?
  3. Из города Л в город В ведут три дороги, а из города В в город С – четыре дороги. Сколько есть способов выбора дороги из города A в город С через город В?
  4. Сколько существует различных прямоугольников, площади которых равны 12 см 2 , а длины сторон выражены целым числом сантиметров?
  5. Все трёхзначные числа, которые можно записать с помощью цифр 4 и 5, расположены в порядке возрастания. На каком месте в этом ряду стоит число 545?

СР-24. Понятие обыкновенной дроби

  1. Запишите в виде дроби число: 1) три пятых; 2) семь двенадцатых; 3) двадцать четыре семидесятых; 4) тридцать шесть сотых.
  2. В автопарке имеется 96 автомобилей, из них 25 – грузовые. Какую часть всех автомобилей составляют грузовые?
  3. Выразите в метрах: 5 см; 24 см; 7 дм.
  4. Выразите в часах: 7 мин; 14 мин; 48 с.
  5. Начертите координатный луч, единичный отрезок которого равен 7 см. Отметьте на нём точки, соответствующие дробям: 1/7; 3/7; 5/7; 6/7.
  6. Сколько градусов составляют: 1) 4/15 величины прямого угла; 2) 7/20 величины развёрнутого угла?
  7. Миша прочитал – книги, в которой 300 страниц. Сколько страниц прочитал Миша?
  8. В пятых классах одной школы 117 учащихся, из них 4/9 составляют девочки. Сколько мальчиков учится в пятых классах этой школы?
  9. Аня, Оля и Катя собрали 126 грибов. Аня собрала 2/9 всех грибов, Оля – 25/49 остальных. Сколько грибов собрала Катя?
  10. Длина прямоугольного параллелепипеда равна 48 см, ширина составляет 5/8 длины, а высота – 2/3 ширины. Вычислите объём параллелепипеда.
  11. За день Миша прочитал 42 страницы, что составляет 7/15 книги. Сколько страниц в книге?
  12. Ширина прямоугольника равна 36 см, что составляет 9/10 его длины. Вычислите периметр и площадь прямоугольника.
  13. Одно из слагаемых равно 72, и оно составляет 12/17 суммы. Найдите второе слагаемое.
  14. Из двух сёл одновременно навстречу друг другу отправились пешеход и велосипедист. Скорость пешехода равна 4 км/ч, что составляет 2/5 скорости велосипедиста. Через сколько часов после начала движения они встретятся, если расстояние между сёлами равно 28 км?

СР-25. Правильные и неправильные дроби. Сравнение дробей

СР-26. Сложение и вычитание дробей с одинаковыми знаменателями

СР-27. Дроби и деление натуральных чисел. Смешанные числа

  1. Запишите число 8 в виде дроби со знаменателем: 1) 1; 2) 4; 3) 21.
  2. Решите уравнение: 1) х/8 = 14; 2) 198/у = 9;
  3. Преобразуйте неправильную дробь в смешанное число: 1) 9/5; 2) 13/6; 3) 67/10;
  4. Запишите частное в виде дроби и выделите из полученной дроби целую и дробную части: 1) 9 : 4; 2) 48 : 7; 3) 43 : 12.
  5. Запишите в виде неправильной дроби число: 1) 1 1/2; 2) 3 2/7; 3) 5 12/25; 4) 20 4/9.
  6. Выполните действия: 1) 6 + 5/13; 2) 6/57 + 4; 3) 6 4/9 + 5 2/9;
  7. Вычислите: 1) 4 13/17 + 5 4/17; 2) 3 8/11 + 2 6/11; 3) 1 – 16/21;
  8. Решите уравнение: 1) х + 2 7/16 = 5 3/16;
  9. Миша, Саша и Наташа съели арбуз. Миша съел 3/10 арбуза, Саша – 5/10 арбуза. Какую часть арбуза съела Наташа?
  10. В первый день турист прошёл 7/15 маршрута, а во второй – остальные 24 км. Найдите длину всего маршрута.
  11. В школьную столовую завезли апельсины, мандарины и бананы. Апельсины составляли 3/5 всех фруктов, мандарины – 9/17 остального, а бананы – оставшиеся 16 кг. Сколько всего килограммов фруктов завезли в столовую?
  12. Какое наибольшее натуральное число удовлетворяет неравенству а 9,*6; 2) 6,1 > 6,*7; 4) 0,063 2 , что на 2,8 м 2 больше, чем площадь второй, площадь третьей на 5,6 м 2 меньше суммы площадей первой и второй комнат. Какова площадь трёх комнат вместе?
  13. Собственная скорость теплохода равна 32,6 км/ч, скорость течения реки – 1,8 км/ч. Найдите скорость теплохода против течения реки и его скорость по течению.
  14. Скорость катера по течению реки равна 16,3 км/ч, скорость течения – 2,6 км/ч. Найдите собственную скорость катера и его скорость против течения.
  15. Между тремя хранилищами распределили 2474,68 ц картофеля. В первое хранилище поместили 738,74 ц, во второе – на 154,26 ц больше, чем в первое. Сколько центнеров картофеля завезли в третье хранилище?
  16. Решите уравнение: 1) х + 3,72 = 8; 3) х – 12,956 = 11,034; 2) 14,6 – х = 5,293; 4) (28 – х) + 35,6 = 43,214.
  17. Найдите значение выражения: 1) 13,01 – 10,297 + 4,001 – 2,4054; 2) (9,3 – 7,002 + 1,064) – (7,7 – 6,814 – 0,16); 3) 832,8 – (354,1 – 30,49 + 15,098).

СР-32. Умножение десятичных дробей

  1. Выполните умножение: 1) 2,6 • 3,4; 3) 0,27 • 1,8; 5) 36,25 • 8; 2) 7,8 • 5,12; 4) 32,15 • 0,6; 6) 0,012 • 0,35.
  2. Вычислите значение выражения: 1) 14,3 • 0,6 – 5,7 • 1,4; 2) (54 – 23,42) • 0,08; 3) (4,125 – 1,6) • (0,12 + 7,3); 4) (8,4 • 0,55 + 3,28) • 9,2 – 43,78; 5) 14,7 – 3 • (0,008 + 0,992) • (5 • 0,6 – 1,4).
  3. Чему равно произведение: 1) 9,54 • 10; 4) 9,54 • 10 000; 2) 9,54 • 100; 5) 9,54 • 0,1; 3) 9,54 • 1 000; 6) 9,54 • 0,0001?
  4. Турист преодолел первую часть маршрута пешком со скоростью 2,1 км/ч за 3,2 ч, а вторую часть – на велосипеде со скоростью 10,4 км/ч за 4,8 ч. Путь какой длины преодолел турист?
  5. Теплоход плыл 4,2 ч по течению реки и 2,4 ч против течения. Какой путь проплыл теплоход, если его скорость против течения равна 27,3 км/ч, а скорость течения реки – 2,2 км/ч?
  6. Вычислите значение выражения наиболее удобным способом: 1) 0,5 • 74,8 • 2; 3) 0,42 • 5,19 + 5,19 • 0,58; 2) 0,25 • 3,67 • 0,4; 4) 62,9 • 1,8 – 62,7 • 1,8.
  7. Упростите выражение и вычислите его значение: 1) 0,3а • 1,2, если а = 0,05; 2) 2,5m • 0,04n, если m = 3; n = 3,2; 3) 7,9x + 2,1х, если х = 1,65; 4) 1,2m + 3,9m – 2,1m + 1,3, если m = 0,9.
  8. Из одного села в противоположных направлениях одновременно вышли два пешехода. Один из них шёл со скоростью 2,7 км/ч, а второй – 1,8 км/ч. Какое расстояние будет между ними через 1,2 ч после начала движения?
  9. Из одного города в одном направлении одновременно выехали два мотоциклиста. Один из них ехал со скоростью 72,4 км/ч, а второй – 63,8 км/ч. Какое расстояние будет между ними через 2,5 ч после начала движения?

СР-33. Деление десятичных дробей

  1. Выполните деление: 1) 68,4 : 9; 4) 3,55 : 5; 7) 0,1547 : 17; 2) 19,68 : 8; 5) 27 : 5; 8) 16,32 : 16; 3) 39,6 : 15; 6) 3 : 4.
  2. Чему равно частное: 1) 65,78 : 10; 3) 8 : 10; 2) 87 : 10; 4) 12,43 : 100; 5) 0,056 : 100; 6) 54 : 1 000?
  3. Вычислите значение выражения: 1) (139 – 23,48) : 38 + 4,35 • 18; 2) 70,336 : 14 + 46,6 : 100 – 0,123.
  4. Решите уравнение: 1) 7х + 2х = 3,528; 3) 5у + 10,8 = 21,42; 2) 14х – 6х – 0,14 = 5,5; 4) 3,17 – 11х = 2,4.
  5. Автобус проехал 380,4 км за 6 ч. Какое расстояние он проедет за 11 ч, если будет двигаться с такой же скоростью?
  6. Выполните деление: 1) 53,4 : 1,5; 2) 16,94 : 2,8; 3) 75 : 1,25; 4) 3,6 : 0,08; 5) 48,192 : 0,12; 6) 123,12 : 30,4; 7) 0,1242 : 0,069; 8) 2 592 : 0,54.
  7. Найдите частное: 1) 54,3 : 0,1; 2) 23,46 : 0,1; 3) 36 : 0,01; 4) 0,68 : 0,01; 5) 134,68 : 0,01; 6) 483 : 0,001.
  8. Вычислите значение выражения: 1) 1,24 : 3,1 + 12 : 0,25 – 2 : 25 + 18 : 0,45; 2) (33,77 : 1,1 + 1,242 : 0,27) • 1,4 – 4,1; 3) 19 – (2,0088 : 0,062 – 17,82); 4) (1,87 + 1,955) : 0,85 – (3 • 1,75 – 2,5) • 1,62.
  9. Найдите корень уравнения: 1) (1,24 – х) • 3,6 = 3,888; 3) 25 – x : 1,5 = 4,2; 2) 1,1 : (х + 0,14) = 2,5; 4) 144 : х – 7,6 = 82,4.
  10. Площадь прямоугольника равна 5,12 м 2 , одна из его сторон – 3,2 м. Найдите периметр прямоугольника.
  11. Теплоход проплыл 74,58 км по течению реки и 131,85 км против течения. Сколько времени теплоход был в пути, если его собственная скорость равна 31,6 км/ч, а скорость течения – 2,3 км/ч?
  12. Расстояние между двумя городами равно 260,4 км. Из этих городов навстречу друг другу одновременно выехали два автомобиля, которые встретились через 2,4 ч после начала движения. Один из автомобилей двигался со скоростью 48,3 км/ч. Найдите скорость второго автомобиля.
  13. Расстояние между двумя пристанями равно 9,9 км. От этих пристаней в одном направлении одновременно отчалили два катера. Найдите скорость катера, идущего впереди, если второй катер, двигавшийся со скоростью 24.6 км/ч, догнал его через 4,6 ч после начала движения.
  14. Одно слагаемое равно 3,78, что составляет 0,45 суммы. Найдите второе слагаемое.

СР-34. Среднее арифметическое. Среднее значение величины

  1. Найдите среднее арифметическое чисел 23,4; 18,7; 19.6 и 20,8.
  2. Велосипедист ехал 2 ч со скоростью 18 км/ч и 3 ч со скоростью 16 км/ч. Найдите среднюю скорость велосипедиста на протяжении всего пути.
  3. Среднее арифметическое чисел 3,7 и х равно 2,15. Найдите число х.
  4. Автомобиль проехал первую часть пути за 2,6 ч со скоростью 78 км/ч, а вторую часть – за 3,9 ч. С какой скоростью автомобиль проехал вторую часть пути, если средняя скорость в течение всего времени движения составляла 70,2 км/ч?

СР-35. Проценты. Нахождение процентов от числа

  1. Найдите: 1) 8 % от числа 400; 3) 9 % от числа 24; 2) 42 % от числа 75; 4) 140 % от числа 60.
  2. Площадь поля равна 250 га. В первый день собрали урожай с площади, составляющей 18 % поля. С какой площади (в гектарах) был собран урожай в первый день?
  3. Медная руда содержит 8 % меди. Сколько тонн меди содержится в 260 т такой руды?
  4. На ремонт школы потратили 434 000 р. Из них 35 % заплатили за работу, а остальное – за строительные материалы. Сколько стоили строительные материалы?
  5. В школьной библиотеке 1800 книг. Из них 28 % составляют книги научно–популярной тематики, 24 % – книги художественных произведений зарубежных писателей, а остальные – книги художественных произведений русских писателей. Сколько книг художественных произведений русских писателей в библиотеке?

СР-36. Нахождение числа по его процентам

  1. Найдите число, если: 1) 16 % этого числа равны 80; 2) 36 % этого числа равны 162.
  2. В первый день турист прошёл 26 км, что составляет 65 % намеченного для похода пути. Сколько километров запланировал пройти турист?
  3. Морская вода содержит 6 % соли. Сколько воды надо взять, чтобы получить 48 кг соли?
  4. В процессе сушки яблоки теряют 84 % своей массы. Сколько килограммов свежих яблок надо взять, чтобы получить 12 кг сушёных?
  5. За месяц бригада рабочих отремонтировала 88,4 км дороги, что составляет 104 % плана. Сколько километров дороги требовалось отремонтировать по плану?
  6. Магазин в течение трёх дней продал завезённый сахар. В первый день продали 32 % всего сахара, во второй – 40 %, а в третий – остальные 224 кг. Сколько килограммов сахара было завезено в магазин?
  7. На аллее росли каштаны и клёны, причём каштаны составляли 38 % всех деревьев. Клёнов было на 72 дерева больше, чем каштанов. Сколько всего деревьев было на аллее?
  8. Автомобилист доехал из одного города в другой за 3 ч. За первый час он проехал 30 % всего пути, за второй – 55 % оставшегося пути, а за третий – остальные 63 км. Найдите расстояние между городами.

Вы смотрели «Самостоятельные работы Математика 5 Мерзляк». Цитаты самостоятельных работ из пособия для учащихся «Математика 5 класс. Дидактические материалы / А.Г. Мерзляк и др.» (Алгоритм успеха).

Видео:Уравнения со скобками - 5 класс (примеры)Скачать

Уравнения со скобками - 5 класс (примеры)

Самостоятельные работы Математика 5 Мерзляк: 2 комментария

мне бы хотелось что бы были ответы к самостоятельным

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Видео:Уравнение. 5 класс.Скачать

Уравнение. 5 класс.

Предметы

Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

Новые работы

Видео:Правила решения уравнений в 5 классе. Как запомнить и вывести их самому.Скачать

Правила решения уравнений в 5 классе. Как запомнить и вывести их самому.

Найти контрольную:

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Авторы работ и УМК

Видео:ВСЯ математика 5-го класса в одном видео! Альфа-школаСкачать

ВСЯ математика 5-го класса в одном видео! Альфа-школа

Предметы

Видео:Решение сложных уравнений 4-5 класс.Скачать

Решение сложных уравнений 4-5 класс.

Важные страницы

Соглашение о конфиденциальности

(с) 2020-2022. Дистанционный информационный Центр НПИ (г.Москва). Бесплатная помощь школьникам, находящимся на домашнем или семейном обучении. Цитаты из учебных пособий размещены в учебных целях. Контакты: kip1979@mail.ru

Видео:Как решать уравнения. Решение текстовых задач с помощью уравнений. Математика 5 класс. Видеоурок #6Скачать

Как решать уравнения. Решение текстовых задач с помощью уравнений. Математика 5 класс. Видеоурок #6

Популярное

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Предупреждение

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, пользовательских данных (сведения о местоположении; тип и версия ОС; тип и версия Браузера; тип устройства и разрешение его экрана; источник откуда пришел на сайт пользователь; с какого сайта или по какой рекламе; язык ОС и Браузера; какие страницы открывает и на какие кнопки нажимает пользователь; ip-адрес) в целях функционирования сайта, проведения ретаргетинга и проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.

Видео:УРАВНЕНИЯ СО СКОБКАМИ. Примеры | МАТЕМАТИКА 5 классСкачать

УРАВНЕНИЯ СО СКОБКАМИ. Примеры | МАТЕМАТИКА 5 класс

Контрольные работы по математике 5 класс УМК Мерзляк А.Г., Полонский В.Б., Якир М.С.
учебно-методический материал по алгебре (5 класс) на тему

Контрольные работы по математике 5 класс УМК Мерзляк А.Г., Полонский В.Б., Якир М.С.( 4 варианта)

Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать

Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.

Скачать:

ВложениеРазмер
kontrolnye_raboty_po_matematike_5_klass.docx70.47 КБ

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Предварительный просмотр:

Контрольные работы по математике 5 класс

УМК Мерзляк А.Г., Полонский В.Б., Якир М.С.

Контрольная работа № 1

  1. Запишите цифрами число:
  1. шестьдесят пять миллиардов сто двадцать три миллиона девятьсот сорок одна тысяча восемьсот тридцать семь;
  2. восемьсот два миллиона пятьдесят четыре тысячи одиннадцать:
  3. тридцать три миллиарда девять миллионов один.
  1. Сравните числа: 1) 5 678 и 5 489; 2) 14 092 и 14 605.
  2. Начертите координатный луч и отметьте на нём точки, соответствующие числам 2, 5, 7, 9.
  3. Начертите отрезок FK, длина которого равна 5 см 6 мм, отметьте на нём точку C. Запишите все отрезки, образовавшиеся на рисунке, и измерьте их длины.
  4. Точка К принадлежит отрезку МЕ, МК = 19 см, отрезок КЕ на 17 см больше отрезка МК. Найдите длину отрезка МЕ.
  5. Запишите цифру, которую можно поставить вместо звёздочки, чтобы образовалось верное неравенство (рассмотрите все возможные случаи):
  1. 3 78* 3 784; 2) 5 8*5 5 872.
  1. На отрезке CD длиной 40 см отметили точки P и Q так, что CP = 28 см, QD =26 см. Чему равна длина отрезка PQ?
  2. Сравните: 1) 3 км и 2 974 м; 2) 912 кг и 8 ц.
  1. Запишите цифрами число:
  1. семьдесят шесть миллиардов двести сорок два миллиона семьсот восемьдесят три тысячи сто девяносто пять;
  2. четыреста три миллиона тридцать восемь тысяч сорок девять;
  3. сорок восемь миллиардов семь миллионов два.
  1. Сравните числа: 1) 6 894 и 6 983; 2) 12 471 и 12 324.
  2. Начертите координатный луч и отметьте на нём точки, соответствующие числам 3, 4, 6, 8.
  3. Начертите отрезок АВ, длина которого равна 4 см 8 мм, отметьте на нём точку D. Запишите все отрезки, образовавшиеся на рисунке, и измерьте их длины.
  4. Точка T принадлежит отрезку МN, МT = 19 см, отрезок TN на 18 см меньше отрезка МT. Найдите длину отрезка МN.
  5. Запишите цифру, которую можно поставить вместо звёздочки, чтобы образовалось верное неравенство (рассмотрите все возможные случаи):
  1. 2 *14 2 316; 2) 4 78* 4 785.
  1. На отрезке SK длиной 30 см отметили точки A и B так, что SA = 14 см, BK =19 см. Чему равна длина отрезка AB?
  2. Сравните: 1) 3 986 г и 4 кг; 2) 586 см и 6 м.
  1. Запишите цифрами число:
  1. сорок семь миллиардов двести девяносто три миллиона восемьсот пятьдесят шесть тысяч сто двадцать четыре;
  2. триста семь миллионов семьдесят восемь тысяч двадцать три;
  3. восемьдесят пять миллиардов шесть миллионов пять.
  1. Сравните числа: 1) 7 356 и 7 421; 2) 17 534 и 17 435.
  2. Начертите координатный луч и отметьте на нём точки, соответствующие числам 2, 4, 6, 9.
  3. Начертите отрезок MN, длина которого равна 6 см 4 мм, отметьте на нём точку A. Запишите все отрезки, образовавшиеся на рисунке, и измерьте их длины.
  4. Точка E принадлежит отрезку CK, CE = 15 см, отрезок EK на 24 см больше отрезка CE. Найдите длину отрезка CK.
  5. Запишите цифру, которую можно поставить вместо звёздочки, чтобы образовалось верное неравенство (рассмотрите все возможные случаи):
  1. 3 344 3 34*; 2) 2 724 * 619.
  1. На отрезке AC длиной 60 см отметили точки E и F так, что AE = 32 см, FC =34 см. Чему равна длина отрезка EF?
  2. Сравните: 1) 6 т и 5 934кг; 2) 4 м и 512 см.
  1. Запишите цифрами число:
  1. восемьдесят шесть миллиардов пятьсот сорок один миллион триста семьдесят две тысячи триста сорок два;
  2. шестьсот пять миллионов восемьдесят три тысячи десять;
  3. сорок четыре миллиарда девять миллионов три.
  1. Сравните числа: 1) 9 561 и 9 516; 2) 18 249 и 18 394.
  2. Начертите координатный луч и отметьте на нём точки, соответствующие числам 2, 5, 8, 10.
  3. Начертите отрезок АВ, длина которого равна 7 см 8 мм, отметьте на нём точку D. Запишите все отрезки, образовавшиеся на рисунке, и измерьте их длины.
  4. Точка A принадлежит отрезку BM, BA = 25 см, отрезок AM на 9 см меньше отрезка BA. Найдите длину отрезка BM.
  5. Запишите цифру, которую можно поставить вместо звёздочки, чтобы образовалось верное неравенство (рассмотрите все возможные случаи):
  1. 5 64* 5 646; 2) 1 4*2 1 431.
  1. На отрезке OP длиной 50 см отметили точки M и N так, что OM = 24 см, NP =38 см. Чему равна длина отрезка M N?
  2. Сравните: 1) 8 км и 7 962 м; 2) 60 см и 602 мм.

Контрольная работа № 2

Сложение и вычитание натуральных чисел. Числовые и буквенные выражения. Формулы.

  1. Вычислите: 1) 15 327+ 496 383; 2) 38 020 405 – 9 497 653.
  2. На одной стоянке было 143 автомобиля, что на 17 автомобилей больше, чем на второй. Сколько автомобилей было на обеих стоянках?
  3. Выполните сложение, выбирая удобный порядок вычислений:
  1. (325 + 791) + 675; 2) 428 + 856 + 572 + 244.
  1. Проверьте, верно ли неравенство:

1 674 – (736 + 328) 2 000 – (1 835 – 459).

  1. Найдите значение 𝑎 по формуле 𝑎 = 4𝑏 – 16 при 𝑏 = 8.
  2. Упростите выражение 126 + 𝒙 + 474 и найдите его значение при 𝒙 = 278.
  3. Вычислите:
  1. 4 м 73 см + 3 м 47 см; 2) 12 ч 16 мин – 7 ч 32 мин.
  1. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (713 + 529) – 413; 2) 624 – (137 + 224).
  1. Вычислите: 1) 17 824+ 128 356; 2) 42 060 503 – 7 456 182.
  2. На одной улице 152 дома, что на 18 домов меньше, чем на другой. Сколько всего домов на обеих улицах?
  3. Выполните сложение, выбирая удобный порядок вычислений:
  1. (624 + 571) + 376; 2) 212 + 497 + 788 + 803.
  1. Проверьте, верно ли неравенство:

1 826 – (923 + 249) 3 000 – (2 542 – 207).

  1. Найдите значение 𝑝 по формуле 𝑝= 40 – 7𝑞 при 𝑞 = 4.
  2. Упростите выражение 235 + y + 465 и найдите его значение при y = 153.
  3. Вычислите:
  1. 6 м 23 см + 5 м 87 см; 2) 14 ч 17 мин – 5 ч 23 мин.
  1. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (837 + 641) – 537; 2) 923 – (215 + 623).
  1. Вычислите: 1) 26 832 + 573 468; 2) 54 073 507 – 6 829 412.
  2. В одном классе 37 учащихся, что на 9 человек больше, чем во втором. Сколько всего учащихся в обоих классах?
  3. Выполните сложение, выбирая удобный порядок вычислений:
  1. (736 + 821) + 264; 2) 573 + 381 + 919 + 627.
  1. Проверьте, верно ли неравенство:

2 491 – (543 + 1 689) 1 000 – (931 – 186).

  1. Найдите значение 𝑦 по формуле 𝑦 = 3𝑥 + 18 при 𝑥 = 5.
  2. Упростите выражение 433 + 𝑎 + 267 и найдите его значение при 𝑎 = 249.
  3. Вычислите:
  1. 7 м 23 см + 4 м 81 см; 2) 6 ч 38 мин – 4 ч 43 мин.
  1. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (674 + 245) – 374; 2) 586 – (217 + 186).
  1. Вычислите: 1) 19 829 + 123 471; 2) 61 030 504 – 8 695 371.
  2. На одной книжной полке стоят 23 книги, что на 5 книг меньше, чем на другой. Сколько всего книг стоит на обеих полках?
  3. Выполните сложение, выбирая удобный порядок вычислений:
  1. (349 + 856) + 651; 2) 166 + 452 + 834 + 748.
  1. Проверьте, верно ли неравенство:

1 583 – (742 + 554) 1 000 – (883 – 72).

  1. Найдите значение 𝑥 по формуле 𝑥 = 16 + 8𝑧 при 𝑧 = 7.
  2. Упростите выражение 561 + 𝑏 + 139 и найдите его значение при 𝑏 = 165.
  3. Вычислите:
  1. 9 м 41 см + 4 м 72 см; 2) 18 ч 18 мин – 5 ч 24 мин.
  1. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (563 + 721) – 363; 2) 982 – (316 + 582).

Контрольная работа № 3

Уравнение. Угол. Многоугольники.

  1. Постройте угол МКА, величина которого равна 74 . Проведите произвольно луч КС между сторонами угла МКА. Запишите образовавшиеся углы и измерьте их величины.
  2. Решите уравнение: 1) 𝑥 +37 = 81 2) 150 – 𝑥 = 98.
  3. Одна из сторон треугольника равна 24 см, вторая – в 4 раза короче первой, а третья – на 16 см длиннее второй. Вычислите периметр треугольника.
  4. Решите уравнение: 1) (34 + 𝑥) – 83 = 42 2) 45 – (𝑥 – 16) = 28.
  5. Из вершины развёрнутого угла АВС (см рис.) проведены два луча ВD и ВЕ так, что ∠АВЕ = 154 , ∠DВС = 128 . Вычислите градусную меру угла DВЕ.
  6. Какое число надо подставить вместо 𝑎, чтобы корнем уравнения

52 – (𝑎 – 𝑥) = 24 было число 40?

  1. Постройте угол ABC, величина которого равна 168 . Проведите произвольно луч BM между сторонами угла ABC. Запишите образовавшиеся углы и измерьте их величины.
  2. Решите уравнение: 1) 21 + 𝑥 = 58 2) 𝑥 – 135 = 76.
  3. Одна из сторон треугольника равна 32 см, вторая – в 2 раза короче первой, а третья – на 6 см короче первой. Вычислите периметр треугольника.
  4. Решите уравнение: 1) (96 – 𝑥) – 15 = 64 2) 31 – (𝑥 + 11) = 18.
  5. Из вершины прямого угла MNK (см рис.) проведены два луча ND и NE так, что ∠MND = 73 , ∠KNF = 48 . Вычислите градусную меру угла DNF.
  6. Какое число надо подставить вместо 𝑎, чтобы корнем уравнения

64 – (𝑎 – 𝑥) = 17 было число 16?

  1. Постройте угол FDK, величина которого равна 56 . Проведите произвольно луч DT между сторонами угла FDK. Запишите образовавшиеся углы и измерьте их величины.
  2. Решите уравнение: 1) 𝑥 + 42 = 94 2) 284 – 𝑥 = 121.
  3. Одна из сторон треугольника равна 12 см, вторая – в 3 раза длиннее первой, а третья – на 8 см короче второй. Вычислите периметр треугольника.
  4. Решите уравнение: 1) (41 + 𝑥) – 12 = 83 2) 62 – (𝑥 – 17) = 31.
  5. Из вершины развёрнутого угла FAN (см рис.) проведены два луча AK и AP так, что ∠NAP = 110 , ∠FAK = 132 . Вычислите градусную меру угла PAK.
  6. Какое число надо подставить вместо 𝑎, чтобы корнем уравнения

(69 – 𝑎) – 𝑥 = 23 было число 12?

  1. Постройте угол NMC, величина которого равна 58 . Проведите произвольно луч MB между сторонами угла NMC. Запишите образовавшиеся углы и измерьте их величины.
  2. Решите уравнение: 1) 𝑥 + 53 = 97 2) 142 – 𝑥 = 76.
  3. Одна из сторон треугольника равна 30 см, вторая – в 5 раза короче первой, а третья – на 22 см длиннее второй. Вычислите периметр треугольника.
  4. Решите уравнение: 1) (58 + 𝑥) – 23 = 96 2) 54 – (𝑥 – 19) = 35.
  5. Из вершины прямого угла DMK (см рис.) проведены два луча MB и MC так, что ∠DMB = 51 , ∠KMC = 65 . Вычислите градусную меру угла BMC.
  6. Какое число надо подставить вместо 𝑎, чтобы корнем уравнения

(𝑎 – 𝑥) – 14 = 56 было число 5?

Контрольная работа № 4

Умножение и деление натуральных чисел. Свойства умножения.

  1. Вычислите:
  1. 36 ∙ 2 418; 3) 1 456 : 28;
  2. 175 ∙ 204; 4) 177 000 : 120.
  1. Найдите значение выражения: (326 ∙ 48 – 9 587) : 29.
  2. Решите уравнение:
  1. 𝑥 ∙ 14 = 364; 2) 324 : 𝑥 = 9; 3) 19 𝑥 — 12 𝑥 = 126.
  1. Найдите значение выражения наиболее удобным способом:
  1. 25 ∙ 79 ∙ 4; 2) 43 ∙ 89 + 89 ∙ 57.
  1. Купили 7 кг конфет и 9 кг печенья, заплатив за всю покупку 1 200 р. Сколько стоит 1 кг печенья, если 1 кг конфет стоит 120 р?
  2. С одной станции одновременно в одном направлении отправились два поезда. Один из поездов двигался со скоростью 56 км/ч, а второй – 64 км/ч. Какое расстояние будет между поездами через 6 ч после начала движения?
  3. Сколькими нулями оканчивается произведение всех натуральных чисел от 19 до 35 включительно?
  1. Вычислите:
  1. 24 ∙ 1 246; 3) 1 856 : 32;
  2. 235 ∙ 108; 4) 175 700 : 140.
  1. Найдите значение выражения: (625 ∙ 25 – 8 114) : 37.
  2. Решите уравнение:
  1. 𝑥 ∙ 28 = 336; 2) 312 : 𝑥 = 8; 3) 16 𝑥 — 11 𝑥 = 225.
  1. Найдите значение выражения наиболее удобным способом:
  1. 2 ∙ 83 ∙ 50; 2) 54 ∙ 73 + 73 ∙ 46.
  1. Для проведения ремонта электрической проводки купили 16 одинаковых мотков алюминиевого и 11 одинаковых мотков медного провода. Общая длина купленного провода составляла 650 м. Сколько метров алюминиевого провода было в мотке, если медного провода в одном мотке было 30 м?
  2. Из одного города одновременно в одном направлении выехали два автомобиля. Один из них двигался со скоростью 74 км/ч, а второй – 68 км/ч. Какое расстояние будет между автомобилями через 4 ч после начала движения?
  3. Сколькими нулями оканчивается произведение всех натуральных чисел от 23 до 42 включительно?
  1. Вычислите:
  1. 32 ∙ 1 368; 3) 1 664 : 26;
  2. 145 ∙ 306; 4) 216 800 : 160.
  1. Найдите значение выражения: (546 ∙ 31 – 8 154) : 43.
  2. Решите уравнение:
  1. 𝑥 ∙ 22 = 396; 2) 318 : 𝑥 = 6; 3) 19 𝑥 — 7 𝑥 = 144.
  1. Найдите значение выражения наиболее удобным способом:
  1. 5 ∙ 97 ∙ 20; 2) 68 ∙ 78 — 78 ∙ 58.
  1. В автомобиль погрузили 5 одинаковых мешков сахара и 3 одинаковых мешка муки. Оказалось, что общая масса груза равна 370 кг. Какова масса одного мешка муки, если масса одного мешка сахара равна 50 кг?
  2. Из одного села одновременно в одном направлении отправились пешеход и велосипедист. Пешеход двигался со скоростью 3 км/ч, а велосипедист – 12 км/ч. Какое расстояние будет между ними через 3 ч после начала движения?
  3. Сколькими нулями оканчивается произведение всех натуральных чисел от 34 до 53 включительно?
  1. Вычислите:
  1. 28 ∙ 2 346; 3) 1 768 : 34;
  2. 185 ∙ 302; 4) 220 500 : 180.
  1. Найдите значение выражения: (224 ∙ 46 – 3 232) : 34.
  2. Решите уравнение:
  1. 𝑥 ∙ 16 = 384; 2) 371 : 𝑥 = 7; 3) 22 𝑥 — 14 𝑥 = 112.
  1. Найдите значение выражения наиболее удобным способом:
  1. 2 ∙ 87 ∙ 50; 2) 167 ∙ 92 — 92 ∙ 67.
  1. В школьную столовую завезли 8 одинаковых ящиков яблок и 6 одинаковых ящиков апельсинов. Сколько килограммов апельсинов было в одном ящике, если всего было 114 кг яблок и апельсинов, а яблок в каждом ящике было 9 кг?
  2. От одной пристани одновременно в одном направлении отплыли лодка и катер. Лодка плыла со скоростью 14 км/ч, а катер – 21 км/ч. Какое расстояние будет между ними через 5 ч после начала движения?
  3. Сколькими нулями оканчивается произведение всех натуральных чисел от 41 до 64 включительно?

Контрольная работа № 5

Деление с остатком. Площадь прямоугольника. Прямоугольный параллелепипед и его объем. Комбинаторные задачи.

  1. Выполните деление с остатком: 478 : 15.
  2. Найдите площадь прямоугольника, одна сторона которого равна 14 см, а вторая сторона в 3 раза больше первой.
  3. Вычислите объем и площадь поверхности куба с ребром 3 см.
  4. Длина прямоугольного параллелепипеда равна 18 см, ширина – в 2 раза меньше длины, а высота – на 11 см больше ширины. Вычислите объем параллелепипеда.
  5. Чему равно делимое, если делитель равен 11, неполное частное – 7, а остаток – 6?
  6. Поле прямоугольной формы имеет площадь 6 га. Ширина поля 150 м. Вычислите периметр поля.
  7. Запишите все трёхзначные числа, для записи которых используются только цифры 5, 6 и 0 (цифры не могут повторяться).
  8. Сумма длин всех рёбер прямоугольного параллелепипеда равна 116 см, а два его измерения – 12 см и 11 см. Найдите третье измерение параллелепипеда.
  1. Выполните деление с остатком: 376 : 18.
  2. Найдите площадь прямоугольника, одна сторона которого равна 21 см, а вторая сторона в 3 раза меньше первой.
  3. Вычислите объем и площадь поверхности куба с ребром 4 дм.
  4. Ширина прямоугольного параллелепипеда равна 6 см, длина – в 5 раз больше ширины, а высота – на 5 см меньше длины. Вычислите объем параллелепипеда.
  5. Чему равно делимое, если делитель равен 17, неполное частное – 5, а остаток – 12?
  6. Поле прямоугольной формы имеет площадь 3 га, его длина – 200 м. Вычислите периметр поля.
  7. Запишите все трёхзначные числа, для записи которых используются только цифры 0, 9 и 4 (цифры не могут повторяться).
  8. Сумма длин всех рёбер прямоугольного параллелепипеда равна 80 см, а два его измерения – 10 см и 4 см. Найдите третье измерение параллелепипеда.
  1. Выполните деление с остатком: 516 : 19.
  2. Найдите площадь прямоугольника, одна сторона которого равна 17 см, а вторая сторона в 2 раза больше первой.
  3. Вычислите объем и площадь поверхности куба с ребром 5 дм.
  4. Высота прямоугольного параллелепипеда равна 20 см, длина – на 4 см больше высоты, а ширина – в 2 раза меньше длины. Вычислите объем параллелепипеда.
  5. Чему равно делимое, если делитель равен 14, неполное частное – 8, а остаток – 9?
  6. Поле прямоугольной формы имеет площадь 7 га, его длина – 350 м. Вычислите периметр поля.
  7. Запишите все трёхзначные числа, для записи которых используются только цифры 1, 2 и 0 (цифры не могут повторяться).
  8. Сумма длин всех рёбер прямоугольного параллелепипеда равна 100 дм, а два его измерения – 8 дм и 13 дм. Найдите третье измерение параллелепипеда.
  1. Выполните деление с остатком: 610 : 17.
  2. Найдите площадь прямоугольника, одна сторона которого равна 45 см, а вторая сторона в 5 раз меньше первой.
  3. Вычислите объем и площадь поверхности куба с ребром 2 см.
  4. Длина прямоугольного параллелепипеда равна 20 см, высота – в 4 раза меньше длины, а ширина – на 7 см больше высоты. Вычислите объем параллелепипеда.
  5. Чему равно делимое, если делитель равен 15, неполное частное – 6, а остаток – 14?
  6. Поле прямоугольной формы имеет площадь 4 га, его ширина – 50 м. Вычислите периметр поля.
  7. Запишите все трёхзначные числа, для записи которых используются только цифры 7, 0 и 8 (цифры не могут повторяться).
  8. Сумма длин всех рёбер прямоугольного параллелепипеда равна 72 см, а два его измерения – 6 см и 8 см. Найдите третье измерение параллелепипеда.

Контрольная работа № 6

  1. Сравните числа:
  1. и ; 2) и 1; 3) и 1.
  1. Выполните действия:
  1. + ; 3) ;
  2. + 5 ; 4) .
  1. В саду растёт 72 дерева, из них составляют яблони. Сколько яблонь растёт в саду?
  2. Кирилл прочёл 56 страниц, что составило книги. Сколько страниц было в книге?
  3. Преобразуйте в смешанное число дробь:
  1. ; 2) .
  1. Найдите все натуральные значения 𝑥 , при которых верно неравенство .
  2. Каково наибольшее натуральное значение n, при котором верно неравенство n ?
  3. Найдите все натуральные значения 𝑎 , при которых одновременно выполняются условия: дробь правильная, а дробь неправильная.
  1. В гараже стоят 63 машины, из них составляют легковые. Сколько легковых машин стоит в гараже?
  2. В классе 12 учеников изучают французский язык, что составляет всех учеников класса. Сколько учеников в классе?
  3. Преобразуйте в смешанное число дробь:
  1. Найдите все натуральные значения 𝑥 , при которых верно неравенство .
  2. Каково наименьшее натуральное значение n, при котором верно неравенство n ?
  3. Найдите все натуральные значения 𝑎 , при которых одновременно выполняются условия: дробь правильная, а дробь неправильная.
  1. В классе 36 учеников, из них занимаются спортом. Сколько учеников занимаются спортом?
  2. Ваня собрал 16 вёдер картофеля, что составляет всего урожая. Сколько вёдер картофеля составляет урожай?
  3. Преобразуйте в смешанное число дробь:
  1. Найдите все натуральные значения 𝑥 , при которых верно неравенство .
  2. Каково наибольшее натуральное значение n, при котором верно неравенство n ?
  3. Найдите все натуральные значения 𝑎 , при которых обе дроби и одновременно будут неправильными.
  1. В пятых классах 64 ученика, из них составляют отличники. Сколько отличников в пятых классах?
  2. Мама приготовила вареники с творогом, а Коля съел 9 штук, что составляет всех вареников. Сколько вареников приготовила мама?
  3. Преобразуйте в смешанное число дробь:
  1. Найдите все натуральные значения 𝑥 , при которых верно неравенство 2 .
  2. Каково наименьшее натуральное значение n, при котором верно неравенство n ?
  3. Найдите все натуральные значения 𝑎 , при которых одновременно выполняются условия: дробь будет неправильная, а дробь правильная.

Контрольная работа № 7

Понятие о десятичной дроби. Сравнение, округление, сложение и вычитание десятичных дробей.

  1. Сравните: 1) 14,396 и 14,4; 2) 0,657 и 0, 6565.
  2. Округлите: 1) 16,76 до десятых; 2) 0,4864 до тысячных.
  3. Выполните действия: 1) 3,87 + 32,496; 2) 23,7 – 16,48; 3) 20 – 12,345.
  4. Скорость катера по течению реки равна 24,2 км/ч, а собственная скорость катера – 22,8 км/ч. Найдите скорость катера против течения реки.
  5. Вычислите, записав данные величины в килограммах:
  1. 3,4 кг + 839 г; 2) 2 кг 30 г – 1956 г.
  1. Одна сторона треугольника равна 5,6 см, что на 1,4 см больше второй стороны и на 0,7 см меньше третьей. Найдите периметр треугольника.
  2. Напишите три числа, каждое из которых больше 5,74 и меньше 5,76.
  3. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (8,63 + 3,298) – 5,63; 2) 0,927 – (0,327 + 0,429).
  1. Сравните: 1) 17,497 и 17,5; 2) 0,346 и 0, 3458.
  2. Округлите: 1) 12,88 до десятых; 2) 0,3823 до сотых.
  3. Выполните действия: 1) 5,62 + 43,299; 2) 25,6 – 14,52; 3) 30 – 14,265.
  4. Скорость катера против течения реки равна 18,6 км/ч, а собственная скорость

катера – 19,8 км/ч. Найдите скорость катера по течению реки.

  1. Вычислите, записав данные величины в метрах:
  1. 8,3 м + 784 см; 2) 5 м 4 см – 385 см.
  1. Одна сторона треугольника равна 4,5 см, что на 3,3 см меньше второй стороны и на 0,6 см больше третьей. Найдите периметр треугольника.
  2. Напишите три числа, каждое из которых больше 3,82 и меньше 3,84.
  3. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (5,94 + 2,383) – 3,94; 2) 0,852 – (0,452 + 0,214).
  1. Сравните: 1) 12,598 и 12,6; 2) 0,257 и 0, 2569.
  2. Округлите: 1) 17,56 до десятых; 2) 0,5864 до тысячных.
  3. Выполните действия: 1) 4,36 + 27,647; 2) 32,4 – 17,23; 3) 50 – 22,475.
  4. Скорость катера по течению реки равна 19,6 км/ч, а собственная скорость катера – 18,3 км/ч. Найдите скорость катера против течения реки.
  5. Вычислите, записав данные величины в центнерах:
  1. 6,7 ц + 584 кг; 2) 6 ц 2 кг – 487 кг.
  1. Одна сторона треугольника равна 3,7 см, что на 0,9 см больше второй стороны и на 1,2 см меньше третьей. Найдите периметр треугольника.
  2. Напишите три числа, каждое из которых больше 7,87 и меньше 7,89.
  3. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (6,73 + 4,594) – 2,73; 2) 0,791 – (0,291 + 0,196).
  1. Сравните: 1) 16,692 и 16,7; 2) 0,745 и 0, 7438.
  2. Округлите: 1) 24,87 до десятых; 2) 0,8653 до тысячных.
  3. Выполните действия: 1) 6,72 + 54,436; 2) 27,6 – 15,72; 3) 40 – 11,825.
  4. Скорость катера против течения реки равна 17,8 км/ч, а собственная скорость

катера – 19,4 км/ч. Найдите скорость катера по течению реки.

  1. Вычислите, записав данные величины в метрах:
  1. 2,8 м + 524 см; 2) 4 м 6 см – 257 см.
  1. Одна сторона треугольника равна 5,1 см, что на 2,1 см меньше второй стороны и на 0,7 см больше третьей. Найдите периметр треугольника.
  2. Напишите три числа, каждое из которых больше 1,34 и меньше 1,36.
  3. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (7,86 + 4,183) – 2,86; 2) 0,614 – (0,314 + 0,207).

Контрольная работа № 8

Умножение и деление десятичных дробей

  1. Вычислите:
  1. 0,024 ∙ 4,5; 3) 2,86 : 100; 5) 0,48 : 0,8;
  2. 29,41 ∙ 1 000; 4) 4 : 16; 6) 9,1 : 0,07.
  1. Найдите значение выражения: (4 – 2,6) ∙ 4,3 + 1,08 : 1,2.
  2. Решите уравнение: 2,4 ( 𝑥 + 0,98) = 4,08.
  3. Моторная лодка плыла 1,4 ч по течению реки и 2,2 ч против течения. Какой путь преодолела лодка за всё время движения, если скорость течения равна 1,7 км/ч, а собственная скорость лодки – 19,8 км/ч?
  4. Если в некоторой десятичной дроби перенести запятую вправо через одну цифру, то она увеличится на 14,31. Найдите эту дробь.
  1. Вычислите:
  1. 0,036 ∙ 3,5; 3) 3,68 : 100; 5) 0,56 : 0,7;
  2. 37,53 ∙ 1 000; 4) 5 : 25; 6) 5,2 : 0,04.
  1. Найдите значение выражения: (5 – 2,8) ∙ 2,4 + 1,12 : 1,6.
  2. Решите уравнение: 0,084 : ( 6,2 – 𝑥) = 1,2.
  3. Катер плыл 1,6 ч против течения реки и 2,4 ч по течению. На сколько больше проплыл катер, двигаясь по течению реки, чем против течения, если скорость течения реки равна 2,1 км/ч, а собственная скорость катера – 28,2 км/ч?
  4. Если в некоторой десятичной дроби перенести запятую влево через одну цифру, то она уменьшится на 23,76. Найдите эту дробь.
  1. Вычислите:
  1. 0,064 ∙ 6,5; 3) 4,37 : 100; 5) 0,63 : 0,9;
  2. 46,52 ∙ 1 000; 4) 6 : 15; 6) 7,2 : 0,03.
  1. Найдите значение выражения: (6 – 3,4) ∙ 1,7 + 1,44 : 1,6.
  2. Решите уравнение: 1,6 ( 𝑥 + 0,78) = 4,64.
  3. Теплоход плыл 1,8 ч против течения реки и 2,6 ч по течению. Какой путь преодолел теплоход за всё время движения, если скорость течения равна 2,5 км/ч, а собственная скорость теплохода – 35,5 км/ч?
  4. Если в некоторой десятичной дроби перенести запятую вправо через одну цифру, то она увеличится на 15,93. Найдите эту дробь.
  1. Вычислите:
  1. 0,096 ∙ 5,5; 3) 7,89 : 100; 5) 0,76 : 0,4;
  2. 78,53 ∙ 100; 4) 6 : 24; 6) 8,4 : 0,06.
  1. Найдите значение выражения: (7 – 3,6) ∙ 2,8 + 1,32 : 2,2.
  2. Решите уравнение: 0,144 : ( 3,4 – 𝑥) = 2,4.
  3. Моторная лодка плыла 3,6 ч против течения реки и 1,8 ч по течению. На сколько километров больше проплыла лодка, двигаясь против течения , чем по течению, если скорость течения реки равна 1,2 км/ч, а собственная скорость лодки – 22,4 км/ч?
  4. Если в некоторой десятичной дроби перенести запятую влево через одну цифру, то она уменьшится на 29,52. Найдите эту дробь.

Контрольная работа № 9

Среднее арифметическое. Проценты.

  1. Найдите среднее арифметическое чисел: 32,6; 38,5; 34; 35,3.
  2. Площадь поля равна 300 га. Рожью засеяли 18 % поля. Сколько гектаров поля засеяли рожью?
  3. Петя купил книгу за 90 р., что составляет 30 % всех денег, которые у него были. Сколько денег было у Пети?
  4. Лодка плыла 2 ч со скоростью 12,3 км/ч и 4 ч со скоростью 13,2 км/ч. Найдите среднюю скорость лодки на всём пути.
  5. Турист прошёл за три дня 48 км. В первый день он прошёл 35 % всего маршрута. Путь пройденный в первый день, составляет 80 % расстояния , пройденного во второй день. Сколько километров прошёл турист в третий день?
  6. В первый день Петя прочитал 40 % всей книги, во второй – 60 % остального, а в третий — оставшиеся 144 страницы. Сколько всего страниц в книге?
  1. Найдите среднее арифметическое чисел: 26,3; 20,2; 24,7; 18.
  2. В школе 800 учащихся. Сколько пятиклассников в этой школе, если известно, что их количество составляет 12 % количества всех учащихся?
  3. Насос перекачал в бассейн 42 воды, что составляет 60 % объёма бассейна. Найдите объём бассейна.
  4. Автомобиль ехал 3 ч со скоростью 62,6 км/ч и 2 ч со скоростью 65 км/ч. Найдите среднюю скорость автомобиля на всём пути.
  5. Токарь за три дня изготовил 80 деталей. В первый день он выполнил 30 % всей работы. Известно, что количество деталей, изготовленных в первый день, составляет 60 % количества деталей , изготовленных во второй день. Сколько деталей изготовил токарь в третий день?
  6. В первый день тракторная бригада вспахала 30 % площади всего поля, во второй – 75% остального, а в третий — оставшиеся 14 га. Найдите площадь поля.
  1. Найдите среднее арифметическое чисел: 26,4; 42,6; 31,8; 15.
  2. В магазин завезли 600 кг овощей. Картофель составляет 24% всех завезённых овощей. Сколько килограммов картофеля завезли в магазин?
  3. За первый день турист прошёл расстояние 18 км, что составляет 40 % всего пути, который он должен преодолеть. Найдите длину пути, который должен пройти турист.
  4. Катер плыл 1,5 ч со скоростью 34 км/ч и 2,5 ч со скоростью 30 км/ч. Найдите среднюю скорость катера на всём пути.
  5. За три дня оператор набрал на компьютере 60 страниц. В первый день было выполнено 35 % всей работы. Объём работы, выполненной в первый день, составляет 70 % работы, выполненной во второй день. Сколько страниц было набрано в третий день?
  6. За первый час было продано 84 % всего мороженого, за второй – 78 % остального, а за третий – оставшиеся 44 порции. Сколько порций мороженого было продано за три часа?
  1. Найдите среднее арифметическое чисел: 43,6; 21,8; 32,4; 11.
  2. Площадь парка равна 40 га. Площадь озера составляет 15 % площади парка. Найдите площадь озера.
  3. За первый час движения автомобиль преодолел расстояние 72 км, что составляет 24 % длины всего пути, который ему надо проехать. Найдите общий путь, который преодолел автомобиль.
  4. Черепаха ползла 2 ч со скоростью 15,3 м/ч и 3 ч со скоростью 12, 4 м/ч. Найдите среднюю скорость черепахи на всём пути.
  5. Три насоса наполнили водой бассейн объёмом 320 . Первый насос заполнил бассейн на 30 %, что составляет 80 % объёма воды, которую перекачал второй насос. Найдите объём воды, которую перекачал третий насос.
  6. В первый день турист прошёл 20% всего пути, во второй – 60 % остального, а в третий – оставшиеся 24 км. Найдите длину пути, который прошёл турист за три дня.

Контрольная работа № 10

Обобщение и систематизация знаний учащихся

за курс математики 5 класса

  1. Найдите значение выражения: (4,1 – 0,66 : 1,2) ∙ 0,6.
  2. Миша шёл из одного села в другое 0,7 ч по полю и 0,9 ч через лес, пройдя всего 5,31 км. С какой скоростью шёл Миша через лес, если по полю он двигался со скоростью 4,5 км/ч?
  3. Решите уравнение: 9,2 𝑥 – 6,8 𝑥 + 0,64 = 1
  4. Ширина прямоугольного параллелепипеда равна 4 см, что составляет его длины, а высота составляет 40 % длины. Вычислите объем параллелепипеда.
  5. Выполните действия: 20 : ( + ) – ( – ) : 5.
  6. Среднее арифметическое четырёх чисел равно 1,4, а среднее арифметическое трёх других чисел – 1,75. Найдите среднее арифметическое этих семи чисел.
  1. Найдите значение выражения: (0,49 : 1,4 – 0,325) ∙ 0,8.
  2. Катер плыл 0,4 ч по течению реки и 0,6 ч против течения, преодолев всего 16,8 км. С какой скоростью плыл катер по течению, если против течения он плыл со скоростью 16 км/ч?
  3. Решите уравнение: 7,2 𝑥 – 5,4 𝑥 + 0,55 = 1
  4. Ширина прямоугольного параллелепипеда равна 3,6 см, что составляет его длины, а высота составляет 42 % длины. Вычислите объем параллелепипеда.
  5. Выполните действия: 30 : ( ) + ( – ) : 7.
  6. Среднее арифметическое трёх чисел равно 2,5, а среднее арифметическое двух других чисел – 1,7. Найдите среднее арифметическое этих пяти чисел.
  1. Найдите значение выражения: (5,25 – 0,63 : 1,4) ∙ 0,4.
  2. Пётр шёл из села к озеру 0,7 ч по одной дороге, а возвратился по другой дороге за 0,8 ч, пройдя всего 6,44 км. С какой скоростью шёл Пётр к озеру, если возвращался он со скоростью 3,5 км/ч?
  3. Решите уравнение: 7,8 𝑥 – 4,6 𝑥 + 0,8 = 12.
  4. Ширина прямоугольного параллелепипеда равна 4,8 см, что составляет его длины, а высота составляет 45 % длины. Вычислите объем параллелепипеда.
  5. Выполните действия: 10 : ( + ) – ( + 1 ) : 6.
  6. Среднее арифметическое пяти чисел равно 2,3, а среднее арифметическое трёх других чисел – 1,9. Найдите среднее арифметическое этих восьми чисел.
  1. Найдите значение выражения: (4,4 – 0,63 :1,8) ∙ 0,8.
  2. Автомобиль ехал 0,9 ч по асфальтированной дороге и 0,6 ч по грунтовой, проехав всего 93,6 км. С какой скоростью двигался автомобиль по асфальтированной дороге, если по грунтовой он ехал со скоростью 48 км/ч?
  3. Решите уравнение: 3,23 𝑥 + 0,97 𝑥 + 0,74 = 2.
  4. Ширина прямоугольного параллелепипеда равна 3,2 см, что составляет его длины, а высота составляет 54 % длины. Вычислите объем параллелепипеда.
  5. Выполните действия: 50 : ( ) – ( – ) : 9.
  6. Среднее арифметическое шести чисел равно 2,8, а среднее арифметическое четырёх других чисел – 1,3. Найдите среднее арифметическое этих десяти чисел.

📹 Видео

Уравнение 5 классСкачать

Уравнение 5 класс

Урок 14 Решение задач с помощью уравнений (5 класс)Скачать

Урок 14 Решение задач с помощью уравнений (5 класс)

Уравнение с двумя скобками.5 класс.МатематикаСкачать

Уравнение с двумя скобками.5 класс.Математика

РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 классСкачать

РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 класс

Вся математика 5 класс за 1 час.Скачать

Вся математика 5 класс за 1 час.

Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать

Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.

Математика 5 класс. 28 октября. Вынесение множителя за скобки в уравнениях #2Скачать

Математика 5 класс. 28 октября. Вынесение множителя за скобки в уравнениях #2
Поделиться или сохранить к себе: