Уравнения 3 степени из огэ

Задание №21 ОГЭ по математике

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Решение уравнений

В данном задании необходимо решить уравнение степени больше двух — это может быть биквадратное или кубическое уравнение. Ниже мы приводим алгоритмы решения типовых заданий!

Разбор типовых вариантов задания №21 ОГЭ по математике

Демонстрационный вариант ОГЭ 2019

Алгоритм решения:
  1. Определить тип уравнения.
  2. Перенести правую часть уравнения в левую.
  3. Привести уравнение к виду, при котором можно его многочлен слева разложить на множители.
  4. Разложить на множители.
  5. Приравнять каждый множитель к нулю
  6. Решить полученные уравнения.
  7. Записать ответ.
Решение:

1. Уравнение четвертой степени.

2. Перенесем правую часть уравнения в левую:

x 4 — (4x — 5) 2 = 0

3. Уравнение уже приведено к виду, при котором можно его левую часть разложить на множители.

4. Данное уравнение разложим на множители по формуле разности квадратов. Получим:

(х 2 – (4х-5))( х 2 + (4х-5)) = 0, или (х 2 – 4х+5)(х 2 + 4х-5) = 0.

5. Приравняем каждый множитель к нулю:

х 2 – 4х+5 = 0 и х 2 + 4х-5 = 0

6. Решим каждое из уравнений по формулам дискриминанта и корней:

Для первого уравнения:

D = b 2 -4ac = 16-20 = — 4, это означает, что первое уравнение х 2 – 4х+5 = 0 не имеет корней.

Для второго уравнения:

Уравнения 3 степени из огэ

Определим корни второго уравнения:

Уравнения 3 степени из огэПолучили два корня: -5; 1.

Первый вариант задания

Уравнения 3 степени из огэ

Алгоритм решения:
  1. Определить тип уравнения.
  2. Найти делители свободного члена уравнения.
  3. Определить среди делителей один из корней.
  4. Выполнить деление кубического многочлена на выражение х-а, где а – найденный корень.
  5. Записать получившийся в результате деления квадратный трехчлен и составим уравнение.
  6. Решить уравнение.
  7. Записать ответ.
Решение:

1. Перед нами уравнение третьей степени общего типа.

2. Найдем делители свободного члена данного уравнения. Это числа: 1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12;.18; -18; 36; -36.

3. Рассмотрим числа 1; -1; 2; -2; 3; -3. Это наименьшие среди найденных делителей. Подставим их по очереди в уравнение вместо х:

  • для x=1: Уравнения 3 степени из огэ— не подходит;
  • для x=-1: Уравнения 3 степени из огэ— не подходит;
  • для х=2: 2 3 +4∙2 2 -9∙2=8=16-18-36=-38≠0 — не подходит;
  • для х=-2: (-2) 3 +4∙(-2) 2 -9∙(-2)-36=-8+16+18-36=-10≠0 – не подходит;
  • для x=3: Уравнения 3 степени из огэ— подходит.

Мы нашли один корень.

4. Теперь выполним деление кубического многочлена на x-3, воспользовавшись схемой Горнера, имеем:

14-9-36
317120

Искать квадратный трехчлен можно другим способом, выполнив деление многочлена столбиком:

Уравнения 3 степени из огэ

5. После деления получаем квадратный трехчлен:

Составим квадратное уравнение для вычисления оставшихся двух корней:

6. Решим его с помощью формул корней и дискриминанта

Уравнения 3 степени из огэ

7. Получили три корня 3; -3; -4.

Второй вариант задания

Уравнения 3 степени из огэ

Алгоритм решения:
  1. Определить тип уравнения.
  2. Найти делители свободного члена уравнения.
  3. Определить среди делителей один из корней.
  4. Выполнить деление кубического многочлена на выражение х-а, где а – найденный корень.
  5. Записать получившийся в результате деления квадратный трехчлен и составим уравнение.
  6. Решить уравнение.
  7. Записать ответ.

1. Перед нами кубическое уравнение общего вида.

2. Найдем делители свободного члена уравнения. Это числа: 1; -1 и 2; -2.

3. Определим один из корней кубического уравнения среди делителей свободного члена .Для этого подставим каждый из этих делителей вместо x и проверим, какой их них является корнем:

— для x=1: Уравнения 3 степени из огэ— подходит это и есть один из корней.

4. Теперь выполним деление кубического многочлена на x-1, воспользовавшись схемой Горнера, имеем:

12-1-2
11320

Искать квадратный трехчлен можно другим способом, выполнив деление многочлена столбиком:

Уравнения 3 степени из огэ

5. Получаем квадратный трехчлен

6. Составим и решим квадратное уравнение для вычисления оставшихся двух корней. Для этого воспользуемся формулами корней квадратного уравнения и дискриминантом.

Видео:ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбикомСкачать

ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбиком

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Видео:Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Видео:ОГЭ. Задание 21. Уравнение третей степени. Разложение на множители.Скачать

ОГЭ. Задание 21. Уравнение третей степени. Разложение на множители.

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Видео:ВСЕ ТИПЫ 20 ЗАДАНИЕ 2 ЧАСТЬ ОГЭ МАТЕМАТИКА 2023Скачать

ВСЕ ТИПЫ 20 ЗАДАНИЕ 2 ЧАСТЬ ОГЭ МАТЕМАТИКА 2023

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Видео:Задание №20. Уравнение 2 часть ОГЭ по математике 2023 | УмскулСкачать

Задание №20. Уравнение 2 часть ОГЭ по математике 2023 | Умскул

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

Видео:Задание 20 ОГЭ математика 2024 2 часть. Кубические уравненияСкачать

Задание 20 ОГЭ математика 2024 2 часть. Кубические уравнения

Алгебраические уравнения и способы их решения. Уравнения третьей и четвертой степени

Что делать, если вам – например, на Профильном ЕГЭ по математике – встретилось не квадратное уравнение, а кубическое? Или даже уравнение четвертой степени? Ведь для уравнений третьей, четвертой и более высоких степеней нет таких простых формул, как для квадратного уравнения.

В этой статье – способы решения сложных алгебраических уравнений. Замена переменной, использование симметрии и даже деление многочлена на многочлен.

Вспомним основные понятия.

Корень уравнения – такое число, которое мы можем подставить вместо переменной в уравнение и получить истинное равенство.

Например, число 3 – корень уравнения 2x = 6.

Решить уравнение – значит найти его корни или доказать, что их нет.

Равносильными называются уравнения, множества решений которых совпадают. Другими словами, у них одни и те же корни.

Например, уравнения и равносильны. Их корни совпадают: или

Замена переменной – ключ к решению многих задач.

Если приводить обе части к одному знаменателю, получим уравнение четвертой степени. Вряд ли мы с ним справимся.

Сделаем замену Тогда

С новой переменной уравнение стало проще:

Умножим обе части на 10t. Получим квадратное уравнение:

Уравнения 3 степени из огэ

Корни этого уравнения: или

Вернемся к переменной

Дискриминант этого уравнения отрицателен, корней нет.

Если , то Получим квадратное уравнение для :

У этого уравнения два корня: или Это ответ.

Не будем спешить раскрывать скобки. Ведь раскрыв их, мы получили бы уравнение четвертной степени.

Посмотрим на уравнение внимательно.

На координатной прямой точки 1; 3; –5; –7 расположены симметрично относительно точки

Уравнения 3 степени из огэ

Сделаем замену , тогда .

Мы выразили все «скобки», то есть все множители, через новую переменную. Вот что это дает:

И еще одна замена: .

Обычное квадратное уравнение. Замечательно!

Подберем его корни по теореме Виета. Заметим, что

Если , то нет решений.

Если , то Тогда или

Дальше – еще интереснее.

3. Решите уравнение

Сделаем замену . То, что в правой части в скобках, заменили на новую переменную.

Получили квадратное уравнение:

Следующее уравнение решим с помощью группировки слагаемых.

4. Решите уравнение

Разложим левую часть уравнения на множители. Сгруппируем слагаемые:

Первые два слагаемых – сумма кубов. Применим формулу: . Получим:

Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Записывается это так:

Уравнения 3 степени из огэ

У нас появилось новое обозначение: — знак совокупности.

Такой знак означает «или».

Запись читается как « или или ».

Решая уравнения и особенно неравенства, мы будем постоянно пользоваться знаками системы и совокупности. Мы записываем решения в виде цепочки равносильных переходов. Для сложных уравнений и неравенств это единственный способ прийти к ответу и не запутаться.

5. Решите уравнение

Разложить левую часть на множители с первой попытки не удается.

Оказывается, если уравнение третьей (четвертой, пятой…) степени имеет целые корни, то находятся они среди делителей свободного члена (слагаемого, не содержащего x). В данном случае – среди целых делителей числа 24.

Выпишем целые делители числа 24:

1; –1; 2; –2; 3; –3; 4; –4; 6; –6; 8; –8; 12; –12; 24; –24

Подставляя их по очереди в уравнение, при получаем верное равенство:

Это значит, что левую часть уравнения можно разложить на множители:

Чтобы найти , поделим выражение на . В столбик. Так же, как мы делим друг на друга числа.

Немного непривычно, да? Потренируйтесь – у вас получится!Уравнения 3 степени из огэ

6. Решите уравнение

А если сделать замену ?

Получаем квадратное уравнение: . Удачная замена!

Если , то Уравнения 3 степени из огэ, нет решений.

7. Решите уравнение

Разложить на множители? Но как? И замена не видна сразу. Посмотрим на уравнение внимательно. Его коэффициенты: 1, — 5, 4, — 5, 1.

Такое уравнение называется симметрическим.

Разделим обе его части на . Мы можем это сделать, поскольку не является корнем нашего уравнения.

🎥 Видео

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Математика| СтепениСкачать

Математика| Степени

Все типы 8 задания ОГЭ 2022 | Свойства корнейСкачать

Все типы 8 задания ОГЭ 2022 | Свойства корней

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!

Все типы задания 6 | Математика ОГЭ 2023 | УмскулСкачать

Все типы задания 6 | Математика ОГЭ 2023 | Умскул

ОГЭ №21 Как решать уравнение (x-3)^4-3(x-3)^2-10=0 Уравнение 4 степени Уравнение с одинаковыми скобкСкачать

ОГЭ №21 Как решать уравнение (x-3)^4-3(x-3)^2-10=0 Уравнение 4 степени Уравнение с одинаковыми скобк

Возвратные уравнения 3 степениСкачать

Возвратные уравнения 3 степени

ОГЭ ДЛЯ НОЛИКОВ. СТЕПЕНИ, ЗАДАНИЕ-8Скачать

ОГЭ ДЛЯ НОЛИКОВ. СТЕПЕНИ, ЗАДАНИЕ-8

Все типы 20 задания ОГЭ по математике | Молодой репетиторСкачать

Все типы 20 задания ОГЭ по математике | Молодой репетитор

Огэ математика. Решение уравнений третьей степени. Кубические уравнения. Группировка. Вторая частьСкачать

Огэ математика. Решение уравнений третьей степени. Кубические уравнения. Группировка. Вторая часть

Решение уравнения третьей степени x³-9x-12=0Скачать

Решение уравнения третьей степени x³-9x-12=0

Разбор всех типов задания №6 из ОГЭ по математике 2024Скачать

Разбор всех типов задания №6 из ОГЭ по математике 2024

ОГЭ задача 21 (системы уравнений) #3Скачать

ОГЭ задача 21 (системы уравнений) #3
Поделиться или сохранить к себе: