Уравнений вторым законом ньютона для вынужденных колебаний является

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Вынужденные механические колебания

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ — колебания, происходящие под действием внешней переменной силы (вынуждающей силы).

Установившиеся вынужденные колебания происходят с частотой, равной частоте вынуждающей силы.

Рассмотрим вынужденные колебания на примере реального (с трением) пружинного маятника. Будем отталкиваться от уравнения движения (второй закон Ньютона) , которое мы написали для затухающих колебаний. При наличии дополнительной вынуждающей силы F(t) необходимо дописать ее в правую часть уравнения. В каноническом виде дифференциальное уравнение вынужденных механических колебаний имеет вид:

Уравнений вторым законом ньютона для вынужденных колебаний является

Для пружинного маятника:

Уравнений вторым законом ньютона для вынужденных колебаний являетсяи Уравнений вторым законом ньютона для вынужденных колебаний является

Для того, чтобы возникли периодические колебания, вынуждающая сила сама должна быть периодической. Пусть Уравнений вторым законом ньютона для вынужденных колебаний является(писать здесь начальную фазу смысла нет, поскольку нас будут интересовать только установившиеся вынужденные колебания, то есть «забывшие» свое начало). W — частота вынуждающей силы. Для нахождения уравнения установившихся колебаний необходимо найти решение дифференциального уравнения:

Уравнений вторым законом ньютона для вынужденных колебаний являетсяпри Уравнений вторым законом ньютона для вынужденных колебаний является.

Общее решение этого неоднородного дифференциального уравнения представляет собой, как известно из теории дифференциальных уравнений, сумму общего решения однородного уравнения и любого частного решения неоднородного. Общее решение однородного уравнения нам известно, это — уравнение затухающих колебаний. Оно нас не интересует, так как при Уравнений вторым законом ньютона для вынужденных колебаний являетсяоно исчезает. В качестве частного решения неоднородного уравнения выберем очевидное — мы знаем, что вынужденные установившиеся колебания совершаются с частотой вынуждающей силы. Поэтому нашим искомым решением будет являться:

Уравнений вторым законом ньютона для вынужденных колебаний является

где Аамплитуда вынужденных колебаний, j ۪сдвиг фаз между смещением и приложенной силой.

Получившиеся колебания подчиняются закону синуса (или косинуса), то есть являются синусоидальными или гармоническими. Но это не свободные колебания в системе без трения; здесь вынуждающая сила постоянно поставляет энергию в систему, в точности компенсирующую потери на преодоление сил трения.

Необходимо теперь найти амплитуду вынужденных колебаний и сдвиг фаз. Для этого необходимо подставить выражение для х в дифференциальное уравнение вынужденных колебаний. Обратите внимание, что необходимо найти два неизвестных из одного уравнения. Это возможно, если в процессе вычислений воспользоваться дополнительным (очевидным в процессе выкладок) условием. Попытайтесь проделать это.

Для амплитуды и сдвига фаз получаются следующие выражения:

Уравнений вторым законом ньютона для вынужденных колебаний является Уравнений вторым законом ньютона для вынужденных колебаний является

здесь w0 — частота свободных (незатухающих) колебаний маятника; b — коэффициент затухания.

Обратите внимание, что амплитуда вынужденных колебаний зависит от соотношения частоты вынуждающей силы и собственной частоты маятника. Максимальное значение амплитуды получается, если Уравнений вторым законом ньютона для вынужденных колебаний является

Частота Уравнений вторым законом ньютона для вынужденных колебаний являетсяназывается резонансной частотой, а достижение максимума амплитуды колебаний при изменении частоты называется явлением резонанса. График зависимости А( W ) носит название резонансной кривой. Обратите внимание, что резонансная частота механических колебаний зависит от коэффициента затухания (а с ним и от коэффициента силы трения). Если силы трения отсутствуют, амплитуда колебаний стремится к бесконечности.

Уравнений вторым законом ньютона для вынужденных колебаний является

Помимо поведения амплитуды при резонансной частоте рассмотрим ещё два предельных случая: Уравнений вторым законом ньютона для вынужденных колебаний являетсяи Уравнений вторым законом ньютона для вынужденных колебаний является

В первом мы получим обычное статическое смещение маятника под действием постоянной силы F0 (статическое растяжение пружины):

Уравнений вторым законом ньютона для вынужденных колебаний является

Во втором случае амплитуда равна нулю: инерция маятника не может успевать реагировать на бесконечную частоту.

Зависимость сдвига фаз от соотношения частот представлена на рисунке. Сдвиг фаз между смещением и вынуждающей силой обусловлен инерцией маятника.

Видео:ЧК_МИФ_3_3_8_1 _(L2)___ВЫВОД УРАВНЕНИЯ ВЫНУЖДЕННЫХ КОЛЕБАНИЙСкачать

ЧК_МИФ_3_3_8_1 _(L2)___ВЫВОД УРАВНЕНИЯ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

Уравнений вторым законом ньютона для вынужденных колебаний является

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными .

В этом случае внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой , воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте .

Если свободные колебания происходят на частоте , которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте внешней силы .

После начала воздействия внешней силы на колебательную систему необходимо некоторое время для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания свободных колебаний в колебательной системе.

В начальный момент в колебательной системе возбуждаются оба процесса – вынужденные колебания на частоте и свободные колебания на собственной частоте . Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте внешней вынуждающей силы.

Рассмотрим в качестве примера вынужденные колебания тела на пружине (рис. 2.5.1). Внешняя сила Уравнений вторым законом ньютона для вынужденных колебаний являетсяприложена к свободному концу пружины. Она заставляет свободный (левый на рис. 2.5.1) конец пружины перемещаться по закону

m cos .

где m – амплитуда колебаний, – круговая частота.

Такой закон перемещения можно обеспечить с помощью шатунного механизма, преобразующего движение по окружности в поступательно-возвратное движение (рис. 2.5.1).

Уравнений вторым законом ньютона для вынужденных колебаний является
Рисунок 2.5.1.

Если левый конец пружины смещен на расстояние , а правый – на расстояние от их первоначального положения, когда пружина была недеформирована, то удлинение пружины равно:

m cos .

Второй закон Ньютона для тела массой принимает вид :

m cos .

В этом уравнении сила, действующая на тело, представлена в виде двух слагаемых. Первое слагаемое в правой части – это упругая сила, стремящаяся возвратить тело в положение равновесия (). Второе слагаемое – внешнее периодическое воздействие на тело. Это слагаемое и называют вынуждающей силой .

Уравнению, выражающему второй закон Ньютона для тела на пружине при наличии внешнего периодического воздействия, можно придать строгую математическую форму, если учесть связь между ускорением тела и его координатой: Уравнений вторым законом ньютона для вынужденных колебаний являетсяТогда уравнение вынужденных колебаний запишется в виде

Уравнений вторым законом ньютона для вынужденных колебаний является
(**)

где Уравнений вторым законом ньютона для вынужденных колебаний является– собственная круговая частота свободных колебаний, – циклическая частота вынуждающей силы. В случае вынужденных колебаний груза на пружине (рис. 2.5.1) величина определяется выражением:

Уравнений вторым законом ньютона для вынужденных колебаний является

Уравнение (**) не учитывает действия сил трения. В отличие от уравнения свободных колебаний (*) (см. §2.2) уравнение вынужденных колебаний (**) содержит две частоты – частоту свободных колебаний и частоту вынуждающей силы.

Установившиеся вынужденные колебания груза на пружине происходят на частоте внешнего воздействия по закону

mcos .

Амплитуда вынужденных колебаний m и начальная фаза зависят от соотношения частот и и от амплитуды ym внешней силы.

На очень низких частотах, когда , движение тела массой , прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этом , и пружина остается практически недеформированной. Внешняя сила Уравнений вторым законом ньютона для вынужденных колебаний являетсяприложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы при стремится к нулю.

Если частота внешней силы приближается к собственной частоте , возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом . Зависимость амплитуды m вынужденных колебаний от частоты вынуждающей силы называется резонансной характеристикой или резонансной кривой (рис. 2.5.2).

При резонансе амплитуда m колебания груза может во много раз превосходить амплитуду m колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью () резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рис. 2.5.2.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Уравнений вторым законом ньютона для вынужденных колебаний является
Рисунок 2.5.2.

Вынужденные колебания – это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными , а процесс незатухающих колебаний в таких системах – автоколебаниями . В автоколебательной системе можно выделить три характерных элемента – колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).

Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. 2.5.3 изображена схема взаимодействия различных элементов автоколебательной системы.

Уравнений вторым законом ньютона для вынужденных колебаний является
Рисунок 2.5.3.

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 2.5.4). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменена пружиной, а маятник – балансиром – маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир. Источником энергии – поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.

Видео:ЧК_МИФ ВЫВОД УРАВНЕНИЯ ВЫНУЖДЕННЫХ КОЛЕБАНИЙСкачать

ЧК_МИФ    ВЫВОД УРАВНЕНИЯ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

Гармонические, затухающие, вынужденные колебания. Резонанс (Колебошин С.В.)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Уравнений вторым законом ньютона для вынужденных колебаний является

На данном уроке, тема которого «Гармонические, затухающие, вынужденные колебания. Резонанс», мы продолжим изучать различные виды колебательного движения, познакомимся с таким явлением, как резонанс.

🔍 Видео

Урок 347. Вынужденные колебания. Резонанс (часть 1)Скачать

Урок 347. Вынужденные колебания. Резонанс (часть 1)

71. Вынужденные колебанияСкачать

71. Вынужденные колебания

Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | ИнфоурокСкачать

Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | Инфоурок

Урок 343. Затухающие колебания (часть 1)Скачать

Урок 343. Затухающие колебания (часть 1)

Алгоритм решения задач на второй закон Ньютона часть 1| Физика TutorOnlineСкачать

Алгоритм решения задач на второй закон Ньютона часть 1| Физика TutorOnline

Затухающие колебания. Вынужденные колебания. Физика 11 классСкачать

Затухающие колебания. Вынужденные колебания. Физика 11 класс

Алгоритм решения задач на второй закон Ньютона часть 2| Физика TutorOnlineСкачать

Алгоритм решения задач на второй закон Ньютона часть 2| Физика TutorOnline

Дифференциальные уравнения за 8 часовСкачать

Дифференциальные уравнения за 8 часов

Третий закон Ньютона. Понятие о системе единиц | Физика 10 класс #11 | ИнфоурокСкачать

Третий закон Ньютона. Понятие о системе единиц | Физика 10 класс #11 | Инфоурок

Вынужденные колебания. Резонанс | Физика 11 класс #9 | ИнфоурокСкачать

Вынужденные колебания. Резонанс | Физика 11 класс #9 | Инфоурок

ЭТО ОБЯЗАТЕЛЬНО НУЖНО ЗНАТЬ — Второй Закон Ньютона или от чего зависит ускорение телаСкачать

ЭТО ОБЯЗАТЕЛЬНО НУЖНО ЗНАТЬ — Второй Закон Ньютона или от чего зависит ускорение тела

Урок 53. Простейшие задачи на законы НьютонаСкачать

Урок 53. Простейшие задачи на законы Ньютона

Три Закона Ньютона. Простое ОбъяснениеСкачать

Три Закона Ньютона. Простое Объяснение

Решение задач по теме Законы НьютонаСкачать

Решение задач по теме   Законы Ньютона

База физики: что значат три закона Ньютона на самом деле?Скачать

База физики: что значат три закона Ньютона на самом деле?

70. Затухающие колебанияСкачать

70. Затухающие колебания

Урок 327. Гармонические колебанияСкачать

Урок 327. Гармонические колебания
Поделиться или сохранить к себе: