Презентация к уроку
Цели урока:
- Образовательные: обобщение и систематизация знаний по теме, проверка знаний, умений, навыков. В целях повышения интереса к теме работу вести с помощью опорных конспектов.
- Воспитательные: воспитание мировоззренческого понятия (причинно-следственных связей в окружающем мире), развитие у школьников коммуникативной культуры.
- Развивающие: развитие самостоятельности мышления и интеллекта, умение формулировать выводы по изученному материалу, развитие логического мышления, развитие грамотной устной речи, содержащей физическую терминологию.
Тип урока:систематизация и обобщение знаний.
Техническая поддержка урока:
- Демонстрации:
- Плакаты.
- Показ слайдов с помощью информационно – компьютерных технологий.
- Дидактический материал:
- Опорные конспекты с подробными записями на столах.
- Оформление доски:
- Плакат с кратким содержанием опорных конспектов (ОК);
- Плакат – рисунок с изображением колебательного контура;
- Плакат – график зависимости колебаний заряда конденсатора, напряжения между обкладками конденсатора, силы тока в катушке от времени, электрической энергии конденсатора, магнитной энергии катушки от времени.
План урока:
1. Этап повторения пройденного материала. Проверка домашнего задания.
Четыре группы задач по теме:
- Электромагнитные колебания.
- Колебательный контур.
- Свободные колебания. Свободные колебания – затухающие колебания
- Характеристика колебаний.
2. Этап применения теории к решению задач.
3. Закрепление. Самостоятельная работа.
4. Подведение итогов.
Учитель: Темой урока является «Решение задач по теме: «Электромагнитные колебания и волны» на примере разбора задач ЕГЭ»
К доске вызываются 3 ученика для проверки домашнего задания.
– Задания по этой теме можно разделить на четыре группы.
Четыре группы задач по теме:
1. Задачи с использованием общих законов гармонических колебаний.
2. Задачи о свободных колебаниях конкретных колебательных систем.
3. Задачи о вынужденных колебаниях.
4. Задачи о волнах различной природы.
– Мы остановимся на решении задач 1 и 2 групп.
Урок начнем с повторения необходимых понятий для данной группы задач.
Электромагнитные колебания – это периодические и почти периодические изменения заряда, силы тока и напряжения.
Колебательный контур – цепь, состоящая из соединительных проводов, катушки индуктивности и конденсатора.
Свободные колебания – это колебания, происходящие в системе благодаря начальному запасу энергии с частотой, определяемой параметрами самой системы: L, C.
Скорость распространения электромагнитных колебаний равна скорости света: С = 3 . 10 8 (м/с)
Основные характеристики колебаний
Амплитуда (силы тока, заряда, напряжения) – максимальное значение (силы тока, заряда, напряжения): Im, Qm, Um
Мгновенные значения (силы тока, заряда, напряжения) – i, q, u
Схема колебательного контура
Учитель: Что представляют электромагнитные колебания в контуре?
Электромагнитные колебания представляют периодический переход электрической энергии конденсатора в магнитную энергию катушки и наоборот согласно закону сохранения энергии.
Задача №1 (д/з)
Колебательный контур содержит конденсатор емкостью 800 пФ и катушку индуктивности индуктивностью 2 мкГн. Каков период собственных колебаний контура?
Задача № 2 (д/з)
Колебательный контур состоит из конденсатора емкостью С и катушки индуктивности индуктивностью L. Как изменится период свободных электромагнитных колебаний в этом контуре, если электроемкость конденсатора и индуктивность катушки увеличить в 3р.
Задача № 3 (д/з)
Амплитуда силы тока при свободных колебаниях в колебательном контуре 100 мА. Какова амплитуда напряжения на конденсаторе колебательного контура, если емкость этого конденсатора 1 мкФ, а индуктивность катушки 1 Гн? Активным сопротивлением пренебречь.
Схема электромагнитных колебаний
Ученик 1 наглядно описывает процессы в колебательном контуре.
Ученик 2 комментирует электромагнитные колебания в контуре, используя графическую зависимость заряда, напряжения. Силы тока, электрической энергии конденсатора, магнитной энергии катушки индуктивности от времени.
Уравнения, описывающие колебательные процессы в контуре:
Обращаем внимание, что колебания силы тока в цепи опережают колебания напряжения между обкладками конденсатора на π/2.
Описывая изменения заряда, напряжения и силы тока по гармоническому закону, необходимо учитывать связь между функциями синуса и косинуса.
Задача № 1.
По графику зависимости силы тока от времени в колебательном контуре определите, какие преобразования энергии происходят в колебательном контуре в интервале времени от 1мкс до 2мкс?
1. Энергия магнитного поля катушки увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки.
Задача № 2.
По графику зависимости силы тока от времени в колебательном контуре определите:
а) Сколько раз энергия катушки достигает максимального значения в течение первых 6 мкс после начала отсчета?
б) Сколько раз энергия конденсатора достигает максимального значения в течение первых 6 мкс после начала отсчета?
в) Определите по графику амплитудное значение силы тока, период, циклическую частоту, линейную частоту и напишите уравнение зависимости силы тока от времени.
Задача № 3 (д/з)
Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите, какое преобразование энергии происходит в интервале времени от 0 до 2 мкс?
1. Энергия магнитного поля катушки увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки.
Задача № 4 (д/з)
Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите: сколько раз энергия конденсатора достигает максимального значения в период от нуля до 2мкс? Сколько раз энергия катушки достигает наибольшего значения от нуля до 2 мкс? По графику определите амплитуду колебаний напряжений, период колебаний, циклическую частоту, линейную частоту. Напишите уравнение зависимости напряжения от времени.
К доске вызываются 2 ученика
Задача № 5, 6
Задача № 7
Заряд на обкладках конденсатора колебательного контура изменяется по закону
q = 3·10 –7 cos800πt. Индуктивность контура 2Гн. Пренебрегая активным сопротивлением, найдите электроемкость конденсатора и максимальное значение энергии электрического поля конденсатора и магнитного поля катушки индуктивности.
Задача № 8
В идеальном колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменяется заряд конденсатора в колебательном контуре с течением времени.
t, 10 –6 (C) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
q, 10 –9 (Кл) | 2 | 1,5 | 0 | –1,5 | –2 | –1,5 | 0 | 1,5 | 2 | 1,5 |
1. Напишите уравнение зависимости заряда от времени. Найдите амплитуду колебаний заряда, период, циклическую частоту, линейную частоту.
2. Какова энергия магнитного поля катушки в момент времени t = 5 мкс, если емкость конденсатора 50 пФ.
Домашнее задание. Напишите уравнение зависимости силы тока от времени. Найдите амплитуду колебаний силы тока. Постройте графическую зависимость силы тока от времени.
Видео:Графические зависимости заряда и силы тока от времени в идеальном колебательном контуре. 11 класс.Скачать
Свободные электромагнитные колебания в контуре (Зеленин С.В.)
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На данном уроке мы узнаем, что такое электромагнитные колебания, колебательный контур. Рассмотрим опыт с колебательным контуром и выясним, какие процессы происходят в нем за один период колебаний. В конце урока мы выведем формулу Томсона.
Видео:По графику зависимости заряда конденсатора от времени, определите амплитуду силы тока в катушкеСкачать
Уравнение колебаний
Рис. 15.4 |
Попробуем выяснить, как зависят от времени заряд на обкладке конденсатора и сила тока в колебательном контуре (рис. 15.4). Но прежде, чем мы приступим к вычислениям, отметим следующее:
1) ток в процессе колебаний течет то в одном, то в другом направлении. Чтобы величина силы тока в данный момент времени была определена однозначно, необходимо задать направление обхода контура. Тогда ток, текущий вдоль направления обхода, считаем положительным, а против – отрицательным;
2) заряды на пластинах конденсатора всегда равны по величине и противоположны по знаку, поэтому надо договориться, заряд какой пластины (1 или 2) в данный момент мы рассматриваем;
3) напряжение между пластинами конденсатора – это разность между потенциалами пластин. Эта величина, как и сила тока, меняет знак в процессе колебаний. Чтобы величина была однозначно определена в данный момент времени, договоримся, что мы считаем напряжением U = j1 – j2 или U = j2 – j1, где j1 и j2 – потенциалы пластин 1 и 2 соответственно.
С учетом данных замечаний приступим к установлению зависимости от времени заряда q(t), тока i(t) и напряжения и(t):
1) зададим направление обхода контура по часовой стрелке (см. рис. 15.4);
2) назовем «первой» ту пластинку конденсатора, которая встретилась первой после катушки при следовании по направлению обхода контура, а «второй» – смежную с ней пластину. Зарядом конденсатора будем называть заряд первой пластины;
3) под напряжением будем понимать величину U = j1 – j2. Если q1 > 0, а q2 = –q1 0. Но величина Dq может быть и отрицательной, если ток в данный момент времени t течет против направления обхода, тогда i(t)
. (15.10)
СТОП! Решите самостоятельно: В1–В3, С1–С2.
Задача 15.1. В каких пределах должна изменяться индуктивность катушки колебательного контура, чтобы в контуре происходили колебания с частотой от f1 = 400 Гц до f2 = 500 Гц. Емкость конденсатора С = 10 мкФ.
f1 = 400 Гц f2 = 500 Гц С = 10 мкФ | Решение. Воспользуемся формулой (15.9): , отсюда Гн; |
L1 = ? L2 = ? |
Гн.
Ответ: индуктивность должна изменяться от Гн до Гн.
СТОП! Решите самостоятельно: А1–А4.
Задача 15.2. Период электрических колебаний в контуре 1,0×10 –5 с. При подключении параллельно конденсатору контура дополнительного конденсатора электроемкостью 3,0×10 –8 Ф период колебаний увеличился в два раза. Определите индуктивность катушки и начальную электроемкость конденсатора колебательного контура.
Т1 = 1,0×10 –5 с С2 = 3,0×10 –8 Ф Т2/Т1 = 2 | Решение. Вспомним, что при параллельном соединении емкости конденсаторов складываются, и применим формулу Томсона для обоих случаев: Т1 = , (1) 2Т1 = , (2) |
L = ? C1 = ? |
Разделим (2) на (1) и получим
.
Выразим индуктивность L из (1):
Т1 =
Гн.
Ответ: , Гн.
СТОП! Решите самостоятельно: В4–В6, С3–С5.
Задача 15.3. Колебательный контур состоит из катушки индуктивностью L = 0,20 Гн и конденсатора емкостью С = 1,0×10 –5 Ф. Конденсатор зарядили до напряжения U = 2,0 В, и он начал разряжаться. Каким будет ток в момент, когда энергия контура окажется поровну распределенной между электрическим и магнитным полем?
L = 0,20 Гн С = 1,0×10 –5 Ф U = 2,0 В Wм = Wэ | Решение. Энергия контура равна . В тот момент, когда энергии электрического и магнитного полей равны, на долю энергии магнитного поля приходится ровно половина полной энергии контура, поэтому |
i = ? |
.
Ответ: .
СТОП! Решите самостоятельно: А5–А7, В7–В9.
Задача 15.4.Заряд q на пластинах конденсатора колебательного контура изменяется с течением времени t по закону q = =10 -6 cosl0 4 pt. Записать закон зависимости силы тока от времени i(t). Найти период и частоту колебаний в контуре, амплитуду колебаний заряда и амплитуду колебаний силы тока. Все величины считать точными и заданными в единицах СИ.
q = 10 -6 cosl0 4 pt | Решение. Воспользуемся формулой (15.3) i(t) = = q¢(t): i(t) = (10 -6 cosl0 4 pt)¢ = 10 -6 (–sinl0 4 pt)×10 4 p = = –10 –2 psin10 4 pt. |
i(t) = ? T = ? f = ? qm = ? im = ? |
Учитывая, что q = qmcoswt, а i = –imsinwt, легко находим значения заряда и тока:
Находим амплитуду колебаний заряда и амплитуду колебаний силы тока:
w = 10 4 p Þ Гц;
.
im = 10 –2 p А; w = 5×10 3 Гц; .
📺 Видео
Зависимость заряда конденсатора и силы тока от времениСкачать
Уравнения и графики механических гармонических колебаний. 11 класс.Скачать
Графики зависимости пути и скорости от времениСкачать
7 класс, 6 урок, Графики зависимости пути и скорости от времениСкачать
Выполнялка 53.Гармонические колебания.Скачать
Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать
Урок 18 (осн). Координаты тела. График движения. График скоростиСкачать
Графики зависимости кинематических величин от времени при равномерном и равноускоренном движенииСкачать
Физика - уравнения равноускоренного движенияСкачать
Физика - перемещение, скорость и ускорение. Графики движения.Скачать
3.4 - Физика с нуля. На графике представлена зависимость от времени заряда, прошедшего по проводникуСкачать
Задача из ЕГЭ по физике │Анализ графика #1Скачать
Урок 15. Решение задач на графики движенияСкачать
По графику, приведённому на рисунке 6.15, найдите амплитуду ЭДС индукции, период и частоту обращенияСкачать
Графики зависимости скорости и расстояния от времени. Физика 7 класс.Скачать
Урок 335. Анализ графика гармонических колебанийСкачать
Физика. 11 класс. Уравнение и графика гармонических колебаний /03.09.2020/Скачать
Урок 353. Колебательный контурСкачать