В идеальном колебательном контуре происходят свободные электромагнитные колебания. Сила тока I в этом контуре изменяется с течением времени t по следующему закону: В этой формуле все величины приведены в СИ. Чему был равен заряд конденсатора в момент времени t = 0? Ответ запишите в микрокулонах.
Из уравнения следует, что амплитуда силы тока равна Im = 12 А, циклическая частота равна Максимальное значение заряда равно
Тогда уравнение зависимости заряда от времени имеет вид:
Заряд в момент времени t = 0 равен
Критерии оценивания выполнения задания
Баллы
Приведено полное решение, включающее следующие элементы:
I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом;
II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);
III) представлены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);
IV) представлен правильный ответ с указанием единиц измерения искомой величины
2
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены преобразования, направленные на решение задачи, но имеется один или несколько из следующих недостатков.
Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.
В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты.
В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.
Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать
Зарядка конденсатора от источника постоянной ЭДС
Рассмотренный в предыдущем разделе процесс зарядки конденсатора посредством перенесения заряда с одной обкладки на другую имеет исключительно теор етический интерес, как метод расчета энерги и конденсатора. Реально конденсаторы заряжают, подключая их к источнику ЭДС, например, к гальванической батарее.
Пусть конденсатор емкостью C подключен к источнику, ЭДС которого равна e (Рис. 145). Полное электрическое сопротивление цепи (включающее и внутренне сопротивление источника) обо значим R . При замыкании ключа в цепи пойдет электрический ток, благодаря которому на обкладках конденсатора будет накапливаться электрический заряд. По закону Ома сумма напряжений на конденсаторе и резисторе U R = I R равна ЭДС источника , что приводит к уравнению
. (1)
В этом уравнении заряд конденсатора и сила тока зависят от времени. Скорость изменения заряда конденсатора по определению равна силе тока в цепи , что позволяет получить уравнение, описывающее изменение заряда конденсатора с течением времени
. (2)
Можно также получить уравнение, непосредственно описывающее изменение силы тока в цепи с течением времени. Для этого на основании уравнения (1) запишем уравнения для малых изменений входящих величин
.
Формально эту операцию можно описать следующим образом: уравнение (1) следует записать для двух моментов времени t и ( t + Delta t ), а затем из второго уравнения вычесть первое. Так как ЭДС источника постоянна, то ее изменение равно нулю Delta e = 0, сопротивление цепи и емкость конденсатора постоянны, поэтому их можно вынести из под знака изменения Delta, поэтому полученное уравнение приобретает вид
.
Наконец разделим его на промежуток времени, в течение которого произошли эти изменения, в результате получаем искомое уравнение (с учетом связи между силой тока и изменения заряда)
. (3)
Математический смысл этого уравнения указывает, что скорость уменьшения тока пропорциональна самой силе тока. Для однозначного решения этого уравнения необходимо задать начальное условие – значение силы тока в начальный момент времени I 0 = I(0).
С уравнениями такого типа мы познакомились в «математическом отступлении» , поэтому здесь его анализ проведем кратко. В начальный момент времени, когда заряд конденсатора равен нулю, скорость возрастания заряда (то есть сила тока) максимальна и равна . Затем по мере накопления заряда сила тока будет уменьшаться, когда напряжение на конденсаторе станет равным ЭДС источника, заряд конденсатора достигнет максимального стационарного значения и ток в цепи прекратится.
Схематически зависимости заряда конденсатора и силы тока в цепи от времени показаны на рис. 146. Для оценки времени зарядки конденсатора можно принять, что заряд возрастает до максимального значения с постоянной скоростью, равной силе тока в начальный момент времени. В этом случае
. (4)
Аналогичная оценка исчезновения тока, полученная на основании уравнения (3) приводит к этому же результату.
Строго говоря, время зарядки конденсатора, описываемой уравнением (2) равно бесконечности. Это парадокс можно исключить, если принять во внимание дискретность электрического заряда. Кроме того, заряд конденсатора, подключенного к батарее с течением времени случайным образом изменяется, флуктуирует, поэтому рассматриваемое уравнение описывает некоторые усредненные характеристики процесса. Тем не менее, полученная оценка времени RC широко применяется в приближенных расчетах, часто ее называют просто временем зарядки конденсатора .
Рассмотрим теперь превращения различных форм энерги и в данном процессе. Понятно, что причиной тока в цепи и как следствие зарядки конденсатора являются сторонние силы источника. На первый взгляд, энергетический баланс включает определенное противоречие: если источник сообщил конденсатору заряд q , то сторонние силы совершили при этом работу A 0 = q e , при этом энерги я конденсатора стала равной , что в два раза меньше работы совершенной источником. Противоречие исчезает, если принять во внимание, что в процессе зарядки по цепи течет электрический ток, поэтому на резисторе выделяется некоторое количество теплоты, то есть часть энерги и источника переходит в тепловую. Мысленно разобьем время зарядки на малые промежутки Delta t i ( i = 1,2,3. ). Перепишем уравнение (1) в виде
, (5)
и умножим его на величину малой порции заряда, переносимого за малый промежуток времени Delta t i , Delta q i = I i Delta t i . В результате получим
. (6)
Здесь обозначено q i — заряд конденсатора перед перенесением рассматриваемой порции заряда. Каждый член полученного уравнения имеет явный физический смысл :
— работа сторонних сил по перемещению порции заряда ? q i ; — увеличение энерги и конденсатора при увеличении его заряда на Delta q i ; — количество теплоты, выделившееся на резисторе, при протекании
порции заряда Delta q i .
Таким образом, закон сохранения энерги и, выражаемый уравнением баланса (6) для малого промежутка времени оказывается выполненным, следовательно, он будет выполнен и для всего процесса зарядки. Просуммируем выражение (5) по всем промежуткам времени зарядки, в результате чего получим:
— полная работа сторонних сил по перенесению электрического заряда, равного стационарному заряду конденсатора; — энерги я заряженного конденсатора; наконец, — количество выделившейся на резисторе теплоты.
Принимая во внимание уравнение (3) и формулы из «математического отступления» , последнюю сумму можно выразить в виде
. (6)
Эта сумма же может быть вычислена графически. Формула (1) задает зависимость напряжения на резисторе U R = I R от заряда конденсатора. Эта зависимость линейна, ее график (Рис. 147) является отрезком прямой линии. За малый промежуток времени через резистор протечет малый заряд Delta q i , при этом выделится количество теплоты , которое численно равно площади узкой полоски, выделенной на рисунке. Полное количество теплоты, выделившейся при прохождении всего заряда численно равно площади треугольника под графиком зависимости U R ( q ), то есть
. (7)
Таким образом, энергетический баланс полностью сходится и для всего процесса целиком: работа, совершенная источником равна сумме энерги и конденсатора и количества выделившейся теплоты A = W C + Q . Схематически преобразование энерги и в этом процессе показано на рис. 148.
Интересно заметить, что количество теплоты, выделяющееся при зарядке, не зависит о сопротивления цепи и в точности равно энерги и конденсатора. То есть, половина энерги и источника переходит в энерги ю электрического поля, а вторая в тепловую энерги ю, выделяющуюся в цепи: природа требует своеобразный пятидесятипроцентный налог в виде тепловых потерь, не зависимо от сопротивления цепи и емкости конденсатора [1] .
Видео:Зависимость заряда конденсатора и силы тока от времениСкачать
Примечания
^ Но эти параметры цепи определяют время процесса.
Об авторе: Этот материал взят из источника в свободном доступе интернета. Вся грамматика источника сохранена.
Видео:Графические зависимости заряда и силы тока от времени в идеальном колебательном контуре. 11 класс.Скачать
Уравнение колебаний
Рис. 15.4
Попробуем выяснить, как зависят от времени заряд на обкладке конденсатора и сила тока в колебательном контуре (рис. 15.4). Но прежде, чем мы приступим к вычислениям, отметим следующее:
1) ток в процессе колебаний течет то в одном, то в другом направлении. Чтобы величина силы тока в данный момент времени была определена однозначно, необходимо задать направление обхода контура. Тогда ток, текущий вдоль направления обхода, считаем положительным, а против – отрицательным;
2) заряды на пластинах конденсатора всегда равны по величине и противоположны по знаку, поэтому надо договориться, заряд какой пластины (1 или 2) в данный момент мы рассматриваем;
3) напряжение между пластинами конденсатора – это разность между потенциалами пластин. Эта величина, как и сила тока, меняет знак в процессе колебаний. Чтобы величина была однозначно определена в данный момент времени, договоримся, что мы считаем напряжением U = j1 – j2 или U = j2 – j1, где j1 и j2 – потенциалы пластин 1 и 2 соответственно.
С учетом данных замечаний приступим к установлению зависимости от времени заряда q(t), тока i(t) и напряжения и(t):
1) зададим направление обхода контура по часовой стрелке (см. рис. 15.4);
2) назовем «первой» ту пластинку конденсатора, которая встретилась первой после катушки при следовании по направлению обхода контура, а «второй» – смежную с ней пластину. Зарядом конденсатора будем называть заряд первой пластины;
3) под напряжением будем понимать величину U = j1 – j2. Если q1 > 0, а q2 = –q1 0. Но величина Dq может быть и отрицательной, если ток в данный момент времени t течет против направления обхода, тогда i(t)
. (15.10)
СТОП! Решите самостоятельно: В1–В3, С1–С2.
Задача 15.1. В каких пределах должна изменяться индуктивность катушки колебательного контура, чтобы в контуре происходили колебания с частотой от f1 = 400 Гц до f2 = 500 Гц. Емкость конденсатора С = 10 мкФ.
Ответ: индуктивность должна изменяться от Гн до Гн.
СТОП! Решите самостоятельно: А1–А4.
Задача 15.2. Период электрических колебаний в контуре 1,0×10 –5 с. При подключении параллельно конденсатору контура дополнительного конденсатора электроемкостью 3,0×10 –8 Ф период колебаний увеличился в два раза. Определите индуктивность катушки и начальную электроемкость конденсатора колебательного контура.
Т1 = 1,0×10 –5 с С2 = 3,0×10 –8 Ф Т2/Т1 = 2
Решение. Вспомним, что при параллельном соединении емкости конденсаторов складываются, и применим формулу Томсона для обоих случаев: Т1 = , (1) 2Т1 = , (2)
L = ? C1 = ?
Разделим (2) на (1) и получим
.
Выразим индуктивность L из (1):
Т1 =
Гн.
Ответ: , Гн.
СТОП! Решите самостоятельно: В4–В6, С3–С5.
Задача 15.3. Колебательный контур состоит из катушки индуктивностью L = 0,20 Гн и конденсатора емкостью С = 1,0×10 –5 Ф. Конденсатор зарядили до напряжения U = 2,0 В, и он начал разряжаться. Каким будет ток в момент, когда энергия контура окажется поровну распределенной между электрическим и магнитным полем?
L = 0,20 Гн С = 1,0×10 –5 Ф U = 2,0 В Wм = Wэ
Решение. Энергия контура равна . В тот момент, когда энергии электрического и магнитного полей равны, на долю энергии магнитного поля приходится ровно половина полной энергии контура, поэтому
i = ?
.
Ответ: .
СТОП! Решите самостоятельно: А5–А7, В7–В9.
Задача 15.4.Заряд q на пластинах конденсатора колебательного контура изменяется с течением времени t по закону q = =10 -6 cosl0 4 pt. Записать закон зависимости силы тока от времени i(t). Найти период и частоту колебаний в контуре, амплитуду колебаний заряда и амплитуду колебаний силы тока. Все величины считать точными и заданными в единицах СИ.