Данная статья предоставляет основную информацию об электрическом поведении диодов, смещенных в прямом направлении.
Эта статья объясняет экспоненциальную вольт-амперную характеристику (ВАХ) диодов, концепцию «порогов» и влияние температуры на ВАХ.
- Связь между током и напряжением у диода
- «Пороги» прямого напряжения
- Маломощные и мощные диоды
- Температурная зависимость ВАХ
- Заключение
- Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.
- Прямое включение диода. Прямой ток.
- Обратное включение диода. Обратный ток.
- Прямое и обратное напряжение диода.
- Вольт-амперная характеристика полупроводникового диода.
- Пробои p-n перехода.
- Электрический пробой.
- Туннельный пробой.
- Лавинный пробой.
- Тепловой пробой.
- Характеристики и параметры полупроводникового диода
- Зависимость барьерной емкости диода от напряжения.
- Временные диаграммы тока и напряжения диода при его переключении.
- Параметры диодов.
- 🌟 Видео
Видео:Зависимость силы тока от напряжения. Сопротивление. Закон Ома | Физика 8 класс #15 | ИнфоурокСкачать
Связь между током и напряжением у диода
Когда вы прикладываете напряжение к двум выводам диода с более высоким напряжением на стороне анода и более низким напряжением на стороне катода, начинает протекать прямой ток (то есть ток от анода к катоду). Если напряжение увеличивается, будет увеличиваться и прямой ток, и в этом случае диод будет похож на резистор: большее напряжение приводит к большему току.
Однако если мы внимательно посмотрим на то, как увеличивается ток, мы увидим, что диоды сильно отличаются от резисторов. Если мы будем постоянно увеличивать напряжение на резисторе, мы получим неуклонно увеличивающийся ток. При использовании диода, напротив, постоянно увеличивающееся напряжение будет создавать ток, который сначала увеличивается медленно, затем быстрее и, в конечном итоге, очень быстро.
Это происходит потому, что связь между прямым напряжением диода и его прямым током является экспоненциальной, а не линейной.
На следующем графике зависимости тока диода (Iд) от напряжения диода (Vд) показана экспоненциальная вольт-амперная характеристика типового кремниевого диода.
Рисунок 1 – Вольт-амперная характеристика диода
Как вы можете видеть, прямой ток практически не протекает, когда прямое напряжение ниже 0,5 В. Это область, в которой ток медленно увеличивается относительно роста напряжения.
Переходная область, в которой скорости изменения напряжения и тока более сопоставимы, начинается с около 0,5 В. Однако эта переходная область довольно узкая, и к тому времени, когда Vд достигает 0,7 В, ток диода увеличивается так быстро, что очень маленькие изменения прямого напряжения создают большие изменения прямого тока.
Видео:Урок 151 (осн). Зависимость силы тока от напряжения. Закон ОмаСкачать
«Пороги» прямого напряжения
Как показано на графике выше, связь между током и напряжением диода не является дискретной. Эта связь экспоненциальна, а не линейна; ток плавно увеличивается от нуля до больших значений. Таким образом, если мы интерпретируем «порог» как своего рода мгновенный переход из одного состояния (например, «непроводящий») в другое состояние (например, «проводящий»), то в электрическом поведении диода нет настоящих «порогов».
При этом экспоненциальный характер ВАХ диода приводит к значениям напряжения, которые в контексте практических инженерных задач очень похожи на пороговые значения. Таким образом, часто бывает удобно говорить о двух напряжениях, обозначенных на диаграмме ниже, как если бы они были пороговыми.
Рисунок 2 – Пороговые напряжения диода
Первый порог, 0,5 В, определяет переход от незначительно малого тока к не незначительно малому току. Таким образом, когда мы обсуждаем практические схемы вместо точных научных подробностей, мы можем сказать, что обычный кремниевый диод не позволяет току течь, пока прямое напряжение не превысит 0,5 В.
Второй порог, 0,7 В, определяет точку, в которой наклон кривой ВАХ стал чрезвычайно высоким; мы можем использовать 0,7 В в качестве аппроксимации напряжения, падающего на кремниевом диоде в режиме полной проводимости, поскольку напряжения, значительно превышающие 0,7 В, соответствуют очень большим значениям тока.
Видео:Напряжение, Сопротивление, Сила тока. Проводник, РЕЗИСТОР, последовательное, параллельное соединениеСкачать
Маломощные и мощные диоды
Графики, показанные выше, передают общую зависимость тока от напряжения у кремниевого диода с pn-переходом, но не указывают точные значения тока. Они не говорят нам, какой прямой ток протекает, когда прямое напряжение диода составляет, например, 0,5 В или 0,7 В. А это необходимо, потому что точное числовое соотношение между прямым напряжением и прямым током зависит от физических размеров диода.
Если более конкретно, то площадь поперечного сечения pn-перехода сильно влияет на величину прямого тока, который протекает при заданном прямом напряжении. Таким образом, у физически маленького диода, который предназначен для приложений с низким энергопотреблением, прямой ток может составлять 5 мА, когда прямое напряжение на нем равно 0,7 В, а более крупный диод, предназначенный для приложений с высоким энергопотреблением, может иметь Iд = 500 мА при Vд = 0,7 В.
Видео:В чём разница между НАПРЯЖЕНИЕМ и ТОКОМСкачать
Температурная зависимость ВАХ
Другим фактором, который влияет на точное числовое соотношение между прямым напряжением и прямым током, является температура. Значение напряжения, которое соответствует данному значению тока, с понижением температуры увеличивается. Другими словами, если схема поддерживает ток диода, скажем, 15 мА, падение напряжения на диоде при 10°C будет выше, чем падение напряжения на 20°C.
Следующая диаграмма показывает эту температурную зависимость в виде горизонтального сдвига ВАХ.
Рисунок 3 – График ВАХ диода сдвигается примерно на 2 мВ на градус Цельсия
Видео:Физика 8 класс. §42 Зависимость силы тока от напряжения.Скачать
Заключение
Надеюсь, что эта статья помогла вам понять взаимосвязь между напряжением прямого смещения, приложенным к диоду, и током, который протекает в ответ на это приложенное напряжение.
В следующей статье мы продолжим эту тему, рассматривая диоды с прямым смещением в контексте анализа цепей.
Видео:Что такое НАПРЯЖЕНИЕ и в чем разница с током?Скачать
Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.
05 Июн 2013г | Раздел: Радио для дома
Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.
Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.
По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.
Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.
Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.
На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:
Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.
Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.
На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:
1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.
Видео:НАПРЯЖЕНИЕ - САМОЕ ПРОСТОЕ ОБЪЯСНЕНИЕ В АНИМАЦИИ.Скачать
Прямое включение диода. Прямой ток.
Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.
При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.
Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.
Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.
Видео:Cопротивление, резисторы и закон Ома. Самое понятное объяснение!Скачать
Обратное включение диода. Обратный ток.
Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.
В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.
Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.
Видео:КАК УЗНАТЬ ПАРАМЕТРЫ ЛЮБОГО СВЕТОДИОДАСкачать
Прямое и обратное напряжение диода.
Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).
При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.
Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.
Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.
Видео:Урок 358. Активное сопротивление в цепи переменного тока. Действующее значение тока и напряженияСкачать
Вольт-амперная характеристика полупроводникового диода.
Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.
На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).
Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.
Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).
При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.
Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).
Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.
У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.
При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:
Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.
При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.
Видео:Что такое напряжение, ток, сопротивление, Закон Ома - поймёт даже ребенокСкачать
Пробои p-n перехода.
Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.
Видео:Урок №41. Как с помощью резистора уменьшить напряжение?Скачать
Электрический пробой.
Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.
Туннельный пробой.
Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.
В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).
Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.
Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.
Лавинный пробой.
Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.
Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.
Видео:Электричество за 2 минуты! Напряжение, сила, мощность, постоянный и переменный ток. ПРОСТО О СЛОЖНОМСкачать
Тепловой пробой.
Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.
При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.
На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!
1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
Видео:Закон Ома - связь между напряжением, силой тока и сопротивлениемСкачать
Характеристики и параметры полупроводникового диода
Вольт-амперная характеристика (ВАХ) полупроводникового Вольт-амперная характеристика (ВАХ) полупроводникового диода на постоянном токе (статическая характеристика).
Вольт-амперная характеристика — это зависимость тока i, протекающего через диод, от напряжения u , приложенного к диоду (рис. 1.25). Вольт-амперной характеристикой называют и график этой зависимости.
Вначале будем полагать (см. рис. 1.25), что обратное напряжение (u u /φr- 1)
Тепловой ток is обусловлен генерацией неосновных носителей в областях, прилегающих к области p-n-перехода. Однако часто это идеализированное описание дает неприемлемую погрешность. Особенно большая погрешность возникает при вычислении тока диода, включенного в обратном направлении (U > (φт)) для кремниевых диодов оказывается на несколько порядков меньше реального. В то же время стоит отметить, что в некоторых расчетах обратным током вообще можно пренебречь.
Укажем причины отличия характеристик реальных диодов от идеализированных. Обратимся к прямой ветви вольт-амперной характеристики диода (u> 0,i> 0). Она отличается от идеализированной из-за того, что в реальном случае на нее влияют:
- сопротивления слоев полупроводника (особенно базы);
- сопротивления контактов металл-полупроводник.
Важно отметить, что сопротивление базы может существенно зависеть от уровня инжекции (уровень инжекции показывает, как соотносится концентрация инжектированных неосновных носителей в базе на границе перехода с концентрацией основных носителей в базе). Влияние указанных сопротивлений приводит к тому, что напряжение на реальном диоде при заданном токе несколько больше (обычно на доли вольта), чем это следует из формулы.
Обратимся к обратной ветви (u
Обратимся к режиму пробоя полупроводникового диода и соответствующему участку обратной ветви вольт-амперной характеристики (на рис. 1.27 этот участок не показан).
Диоды многих конкретных типономиналов не предназначены для работы в режиме пробоя. Для них этот режим работы — аварийный. Если при пробое ток в цепи не ограничивается (например, внешним сопротивлением), то диод выходит из строя. В таких приборах при чрезмерном увеличении обратного напряжения (по модулю) практически сразу же начинается тепловой пробой (участок электрического пробоя практически отсутствует).
Напряжение начала пробоя для рассматриваемых диодов — величина нестабильная (пробой начинается при u= -u роб, где uпроб— так называемое напряжение пробоя — положительная величина). Изобразим соответствующую вольт-амперную характеристику (рис. 1.28).
Диоды некоторых конкретных типов спроектированы с расчетом на работу в режиме лавинного пробоя в течение некоторого короткого времени. Такие диоды называют лавинными. Если отрезок времени, в течение которого диод находится в режиме лавинного пробоя, невелик, то его p-n-переход не успевает перегреться и диод не выходит из строя.
Иначе лавинный пробой перейдет в тепловой и диод выйдет из строя.
Изобразим вольт-амперную характеристику для лавинного диода (рис. 1.29).
Лавинные диоды, как правило, более надежны в сравнении с обычными кратковременные (перенапряжения не выводят лавинный диод из строя).
Для некоторых конкретных типов диодов режим пробоя является основным рабочим режимом. Это так называемые стабилитроны, рассматриваемые ниже.
Видео:Урок 6. Что такое НАПРЯЖЕНИЕСкачать
Зависимость барьерной емкости диода от напряжения.
Приведем график зависимости общей емкости Сд кремниевого диода 2Д212А от обратного напряжения (основной вклад в общую емкость вносит барьерная емкость) (рис. 1.30).
Для этого диода максимальный постоянный (средний) прямой ток — 1 А, максимальное постоянное (импульсное) обратное напряжение — 200 В.
Видео:Как правильно измерить постоянный ток мультиметром, просто и доходчиво разжёвано для каждого новичкаСкачать
Временные диаграммы тока и напряжения диода при его переключении.
Обратимся к схеме на рис. 1.31. Предполагается, что вначале ключ К подключает источник напряжения u1, а затем, в момент времени t = 0, источник напряжения u2.
Предполагается также, что напряжения u1 и u2 значительно больше прямого падения напряжения на диоде. Изобразим соответствующие временные диаграммы (рис. 1.32).
До момента времени t = 0 протекает ток i1, который с учетом принятого условия u1>>u определяется выражением i1=u1/R/ Сразу после переключения ключа К и в течение так называемого времени рассасывания tрас протекает ток i2, который ограничивается практически только сопротивлением R, т. е. i2= — (u1/R). В этот отрезок времени в базе диода уменьшается (рассасывается) заряд накопленных при протекании тока неравновесных носителей. Заряд уменьшается в результате рекомбинации и перехода неосновных носителей в эмиттер.
По истечении времени tpac концентрация неосновных носителей в базе на границе p-n-перехода становится равной равновесной. В глубине же базы неравновесный заряд еще существует. Длительность времени рассасывания прямо пропорциональна среднему времени жизни неосновных носителей в базе и зависит от соотношения токов i1 и i2 (чем больше по модулю ток i2, тем меньше, при заданном токе i1, время рассасывания).
В момент времени t1 напряжение на диоде начинает быстро возрастать по модулю, а ток i уменьшаться по модулю (спадать). Соответствующий отрезок времени tcп называют временем спада. Время спада отсчитывают до того момента t2 которому соответствует достаточно малое (по модулю) значение тока i3.
Время спада зависит от времени жизни носителей, а также от барьерной емкости диода и от сопротивления R схемы.
Чем больше указанные емкость и сопротивление R, тем медленнее спадает ток.
Отрезок времени tвос = tpac + tcп называется временем восстановления (временем обратного восстановления).
После завершения переходного процесса (момент времени t3) через диод течет ток iобр ycm — обратный ток в установившемся режиме (определяемый по статической вольт-амперной характеристике диода).
Для упомянутого выше диода 2Д212А типовое время восстановления — 150 нc (150 · 10
9 с) при i1 = 2 А (импульсный ток) и i2 = 0,2 А.
Видео:Простая схема снижения напряжения на диодах. Недостатки.Скачать
Параметры диодов.
Для того, чтобы количественно охарактеризовать диоды, используют большое количество (измеряемое десятками) различных параметров. Некоторые параметры характеризуют диоды самых различных подклассов.
Другие же характеризуют специфические свойства диодов только конкретных подклассов.
Укажем наиболее широко используемые параметры, применяемые к диодам различных подклассов:
Iпр макс — максимально допустимый постоянный прямой ток;
Uпp — постоянное прямое напряжение, соответствующее заданному току;
Uобр макс — максимально допустимое обратное напряжение диода (положительная величина);
Iобр макс — максимально допустимый постоянный обратный ток диода (положительная величина; если реальный ток больше, чем Iобр макс , то диод считается непригодным к использованию);
Rдиф — дифференциальное сопротивление диода (при заданном режиме работы).
В настоящее время существуют диоды, предназначенные для работы в очень широком диапазоне токов и напряжений. Для наиболее мощных диодов Iпр макс составляет килоамперы, a Uобр макс — киловольты.
🌟 Видео
Диод в цепи переменного токаСкачать
Обратное подключение диодаСкачать
Зачем ДИОДЫ ШУНТИРУЮТ РЕЗИСТОРАМИ И КОНДЕНСАТОРАМИСкачать