Уравнение зависимости давления насыщенного пара от температуры

Уравнение зависимости давления насыщенного пара от температуры

Уравнение зависимости давления насыщенного пара от температуры

Если сосуд с жидкостью плотно закрыть, то сначала количество жидкости уменьшится, а затем будет оставаться постоянным. При неиз менн ой температуре система жидкость — пар придет в состояние теплового равновесия и будет находиться в нем сколь угодно долго. Одновременно с процессом испарения происходит и конденсация, оба процесса в среднем комп енсируют друг друга. В первый момент, после того как жидкость нальют в сосуд и закроют его, жидкость будет испаряться и плотность пара над ней будет увеличиваться. Однако одновременно с этим будет расти и число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем большее число его молекул возвращается в жидкость. В результате в закрытом сосуде при постоянной температуре установится динамическое (подвижное) равновесие между жидкостью и паром, т. е. число молекул, покидающих поверхность жидкости за некото р ый промежуток времени, будет равно в среднем числу молекул пара, возвратившихся за то же время в жидкост ь. Пар, нах одящийся в динамическом равновесии со своей жидкостью, называют насыщенным паром. Это определение подчерки вает, что в данном объеме при данной температуре не может находиться большее количество пара.

Давление насыщенного пара .

Что будет происходить с насыщенным паром, если уменьшить занимаемый им объем? Например, если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержимого цилиндра постоянной. При сжатии пара равновесие начнет нарушаться. Плотность пара в первый момент немного увеличится, и из газа в жидкость начнет переходить большее число молекул, чем из жидкости в газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только от температуры, и сжатие пара это число не меняет. Процесс продолжается до тех пор, пока вновь не установится динамическое равновесие и плотность пара, а значит, и концентрация его молекул не примут прежних своих значений. Следовательно, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема. Так как давление пропорционально концентрации молекул (p=nkT), то из этого определения следует, что давление насыщенного пара не зависит от занимаемого им объема. Давление pн.п. пара, при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

Зависимость давления насыщенного пара от температуры.

Уравнение зависимости давления насыщенного пара от температуры

Состояние насыщенного пара, как показывает опыт, приближенно описывается уравнением состояния идеального газа, а его давление определяется формулой Р = nкТ С ростом температуры давление растет. Так как давление насыщенного пара не зависит от объема, то, следовательно, оно зависит только от температуры. Однако зависимость рн.п. от Т, найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением температуры давление реального насыщенного пара растет быстрее, чем давление идеального газа (рис. уча сток кривой 12). Почему это происходит? При нагревании жидкости в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле Р = nкТ давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. В основном увеличение давления при повышении температуры определяется именно увеличением конц ентрац ии. (Главное различие в поведении и деального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар, или, напротив, пар частично конденсируе тся. С идеальным газом ничего подобного не происходит.). Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возраст ать прямо пропорционально абсолютной температуре (см. рис., участок кривой 23).

Кипение – это интенсивный переход вещества из жидкого состояния в газообразное, происходящее по всему объему жидкости (а не только с ее поверхности). (Конденсация – обратный процесс.) По мере увеличения температуры жидкости интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар. При каких условиях начинается кипение?

Уравнение зависимости давления насыщенного пара от температуры

В жидкости всегда присутствуют растворенные газы, выделяющиеся на дне и стенках сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами парообразования. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Понаблюдайте внимательно за чайником на плите. Вы обнаружите, что перед закипанием он почти перестает шуметь. Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара внутри него немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости . Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем выше температура кипения. И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения. Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре. У каждой жидкости своя температура кипения (которая остается постоянной, пока вся жидкость не выкипит), которая зависит от давления ее насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения жидкости.

Влажность воздуха и ее измерение.

В окружающем нас воздухе практически всегда находится некоторое количество водяных паров. Влажность воздуха зависит от количества водяного пара, содержащегося в нем. Сырой воздух содержит больший процент молекул воды, чем сухой. Боль шое значение имеет относительная влажность воздуха, сообщения о которой каждый день звучат в сводках метеопрогноза.

Уравнение зависимости давления насыщенного пара от температуры
Отно сительная влажность — это отношение плотности водяного пара, содержащегося в воздухе, к плотности насыщенного пара при данной температуре, выраженное в процентах (показывает, насколько водяной пар в воздухе близок к насыщению).

Уравнение зависимости давления насыщенного пара от температуры

Уравнение зависимости давления насыщенного пара от температуры

Сухость или влажность воздуха зависит от того, насколько близок его водяной пар к насыщению. Если влажный воздух охлаждать, то находящийся в нем пар можно довести до насыщения, и далее он будет конденсироваться. Признаком того, что пар насытился является появление первых капель сконденсировавшейся жидкости — росы. Температура, при которой пар, находящийся в воздухе, становится насыщенным, называется точкой росы. Точка росы также характеризует влажность воздуха. Примеры: выпадение росы под утро, запотевание холодного стекла, если на него подышать, образование капли воды на холодной водопроводной трубе, сырость в подвалах домов. Для измерения влажности воздуха используют измерительные приборы — гигрометры. Существуют несколько видов гигрометров, но основные: волосной и психрометрический.

Уравнение зависимости давления насыщенного пара от температуры

Уравнение зависимости давления насыщенного пара от температурыУравнение зависимости давления насыщенного пара от температуры

Так как непосредственно измерить давление водяных паров в воздухе сложно, относительную влажность воздуха измеряют косвенным путем. Известно, что от относительной влажности воздуха зависит скорость испарения. Чем меньше влажность воздуха, тем легче влаге испаряться. В психрометре есть два термометра. Один — обычный, его называют сухим. Он измеряет температуру окружающего воздуха. Колба другого термометра обмотана тканевым фитилем и опущена в емкость с водой. Второй термометр показывает не температуру воздуха, а температуру влажного фитиля, отсюда и название увлажненный термометр. Чем меньше влажность воздуха, тем интенсивнее испаряется влага из фитиля, тем большее количество теплоты в единицу времени отводится от увлажненного термометра, тем меньше его показания, следовательно, тем больше разность показаний сухого и увлажненного термометров. Определив разность показаний сухого и увлажненного термометров, по специальной таблице, расположенной на психрометре, находят значение относительной влажности.

Видео:Урок 188. Температурная зависимость давления пара. Точка росыСкачать

Урок 188. Температурная зависимость давления пара. Точка росы

Насыщенный пар

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее — испарится. Что такое испарение и почему оно происходит?

Видео:Давление насыщенного параСкачать

Давление насыщенного пара

Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.

На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика — это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

Уравнение зависимости давления насыщенного пара от температуры

Рис. 1. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.

Итак, испарение — это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен — это кипение).

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара — процесс, обратный испарению жидкости.

Видео:Насыщенный пар. Зависимость давления пара от температуры | Физика 10 класс #35 | ИнфоурокСкачать

Насыщенный пар. Зависимость давления пара от температуры | Физика 10 класс #35 | Инфоурок

Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара — увеличиваться; пар достигнет «насыщения».

Насыщенный пар — это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.

Давление и плотность насыщенного пара обозначаются и . Очевидно, и — это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

Видео:Ненасыщенные и насыщенные пары. Зависимость температуры кипения от внешнего давления. Физика 8 классСкачать

Ненасыщенные и насыщенные пары. Зависимость температуры кипения от внешнего давления. Физика 8 класс

Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного — тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева — Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость — до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие — т.е. пока пар снова не станет насыщенным с прежним значением плотности.

2. Давление насыщенного пара не зависит от его объёма.

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (1) .

Как видим, закон Бойля — Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно — ведь он получен из уравнения Менделеева — Клапейрона в предположении, что масса газа остаётся постоянной.

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.

Действительно, при увеличении температуры возрастает скорость испарения жидкости.

Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие — но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2 ). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.

Уравнение зависимости давления насыщенного пара от температуры

Рис. 2. Зависимость давления пара от температуры

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще — ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

Видео:Урок 187. Испарение и конденсация. Насыщенный пар и его свойстваСкачать

Урок 187. Испарение и конденсация. Насыщенный пар и его свойства

Влажность воздуха

Воздух, содержащий водяной пар, называется влажным.Чем больше пара находится в воздухе, тем выше влажность воздуха.

Абсолютная влажность — это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Относительная влажность воздуха — это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:

Из уравнения Менделеева-Клапейрона (1) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (1) , напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.

Видео:Насыщенный и ненасыщенный пар. Влажность воздуха. 10 класс.Скачать

Насыщенный и ненасыщенный пар. Влажность воздуха. 10 класс.

Зависимость давления насыщенного пара от температуры. Кипение

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Уравнение зависимости давления насыщенного пара от температуры

На этом уроке мы разберём свойства несколько специфичного газа – насыщенного пара. Мы дадим определение этому газу, укажем, чем он принципиально отличается от идеальных газов, рассмотренных нами ранее, и, конкретнее, чем отличается зависимость давления насыщенного газа. Также в этом уроке будет рассмотрен и описан такой процесс, как кипение.

📽️ Видео

Давление водяных паровСкачать

Давление водяных паров

Урок 124 (осн). Зависимость температуры кипения жидкости от давленияСкачать

Урок 124 (осн). Зависимость температуры кипения жидкости от давления

Физика. 8 класс. Зависимость температуры кипения от внешнего давления /03.11.2020/Скачать

Физика. 8 класс. Зависимость температуры кипения от внешнего давления /03.11.2020/

Физика 8 класс (Урок№8 - Испарение и конденсация. Насыщенный пар. Кипение.)Скачать

Физика 8 класс (Урок№8 - Испарение и конденсация. Насыщенный пар. Кипение.)

Влажность воздухаСкачать

Влажность воздуха

Физика 10 класс (Урок№21 - Взаимные превращения жидкостей и газов.)Скачать

Физика 10 класс (Урок№21 - Взаимные превращения жидкостей и газов.)

Давление насыщенных паров видеоСкачать

Давление насыщенных паров видео

Насыщенный парСкачать

Насыщенный пар

Влажность. Насыщенный пар | EGE hub | Влад КельвинСкачать

Влажность. Насыщенный пар | EGE hub | Влад Кельвин

КипениеСкачать

Кипение

Урок 189. Влажность воздуха. Абсолютная и относительная влажностьСкачать

Урок 189. Влажность воздуха. Абсолютная и относительная влажность

🔴 ЕГЭ-2023 по физике. Влажность воздуха. Насыщенный парСкачать

🔴 ЕГЭ-2023 по физике. Влажность воздуха. Насыщенный пар

10 класс | Термодинамика | Насыщенные парыСкачать

10 класс | Термодинамика | Насыщенные пары

ЕГЭ по физике. Теория #28. Влажность воздуха. Насыщенный парСкачать

ЕГЭ по физике. Теория #28. Влажность воздуха. Насыщенный пар
Поделиться или сохранить к себе: