Уравнение высоты тетраэдра опущенной из вершины

Онлайн решение Пирамиды по координатам вершин

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

A ( ; ; ), B ( ; ; ),
C ( ; ; ), D ( ; ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на граньСкачать

Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на грань

Уравнение высоты тетраэдра опущенной из вершины

Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет — тут

Неправильный логин или пароль.

Укажите электронный адрес и пароль.

Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.

Инструкция по изменению пароля отправлена на почту.

Чтобы зарегистрироваться, укажите ваш email и пароль

Нажимая кнопку «Зарегистрироваться» вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.

Видео:Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACD

Как найти высоту тетраэдра формула

Уравнение высоты тетраэдра опущенной из вершины

Высота тетраэдра — равна корню квадратному из двух третих, помноженному на длину ребра тетраэдра

(h — высота тетраэдра, a — ребро тетраэдра)

Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Вывод формулы высоты тетраэдра

Чтобы получить формулу высоты тетраэдра необходимо произвести дополнительные геометрические построения. На рисунке красные линии CF и FS — это высоты соответствующих правильных треугольников ABC и ABS:

Теперь в треугольнике CFS известны все стороны. Высота тетраэдра, как видно из геометрических построений — это высота треугольника CFS. Подставив стороны треугольника в формулу и произведя простые сокращения (используем формулу разность квадратов) получим формулу (1).

Рассмотрим произвольный треугольник ABC и точку D , не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC . В результате получим треугольники ADC , CDB , ABD . Поверхность ограниченная четырьмя треугольниками ABC , ADC , CDB и ABD называется тетраэдром и обозначается DABC .
Уравнение высоты тетраэдра опущенной из вершиныТреугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра

Тетраэдр имеет 4 грани, 6 ребер и 4 вершины.
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием, а оставшиеся три грани боковыми гранями.

Уравнение высоты тетраэдра опущенной из вершиныНо также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.

Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.

Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле

  • S – площадь любой грани,
  • H – высота, опущенная на эту грань

Видео:Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.Скачать

Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.

Правильный тетраэдр – частный вид тетраэдра

Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:

  • Все грани равны.
  • Все плоские углы правильного тетраэдра равны 60°
  • Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
  • Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).

Уравнение высоты тетраэдра опущенной из вершины

Пусть нам дан правильный тетраэдр ABCD с ребрами равными a . DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD .
Высота BM равна BM и равна Уравнение высоты тетраэдра опущенной из вершины
Рассмотрим треугольник BDM , где DH , являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой

Уравнение высоты тетраэдра опущенной из вершины, где
BM=Уравнение высоты тетраэдра опущенной из вершины, DM=Уравнение высоты тетраэдра опущенной из вершины, BD=a,
p=1/2 (BM+BD+DM)= Уравнение высоты тетраэдра опущенной из вершины
Подставим эти значения в формулу высоты. Получим
Уравнение высоты тетраэдра опущенной из вершины
Вынесем 1/2a. Получим

Уравнение высоты тетраэдра опущенной из вершины
Уравнение высоты тетраэдра опущенной из вершины
Применим формулу разность квадратов
Уравнение высоты тетраэдра опущенной из вершины
После небольших преобразований получим
Уравнение высоты тетраэдра опущенной из вершины
Уравнение высоты тетраэдра опущенной из вершины
Объем любого тетраэдра можно рассчитать по формуле
Уравнение высоты тетраэдра опущенной из вершины,
где Уравнение высоты тетраэдра опущенной из вершины,
Уравнение высоты тетраэдра опущенной из вершины
Подставив эти значения, получим
Уравнение высоты тетраэдра опущенной из вершины

Таким образом формула объема для правильного тетраэдра

Уравнение высоты тетраэдра опущенной из вершины

где a –ребро тетраэдра

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Вычисление объема тетраэдра, если известны координаты его вершин

Пусть нам даны координаты вершин тетраэдра
Уравнение высоты тетраэдра опущенной из вершины
Из вершины Уравнение высоты тетраэдра опущенной из вершиныпроведем векторы Уравнение высоты тетраэдра опущенной из вершины, Уравнение высоты тетраэдра опущенной из вершины, Уравнение высоты тетраэдра опущенной из вершины.
Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим
Уравнение высоты тетраэдра опущенной из вершины
Уравнение высоты тетраэдра опущенной из вершины
Уравнение высоты тетраэдра опущенной из вершины

Геометрических смысл смешенного произведения трех векторов заключается в следующем – смешенное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах.
Так как тетраэдр есть пирамида с треугольным основанием, а объем пирамиды в шесть раз меньше объема параллелепипеда, то тогда имеет смысл следующая формула

Уравнение высоты тетраэдра опущенной из вершины

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Свойства

Зная высоту тетраэдра, можно вычислить его ребро, перевернув формулу так, чтобы ребро было равно корню из трех вторых, умноженному на высоту. a=√(3/2) h

Выразив таким образом ребро тетраэдра через его высоту, можно найти периметр тетраэдра, то есть длину всех его ребер, площадь одной грани и площадь полной поверхности тетраэдра. Периметр тетраэдра будет равен шести длинам его ребер, площадь одной грани – ребру в квадрате, умноженному на корень из трех, деленный на четыре, а площадь полной поверхности – четырем площадям одной грани. P=6a=6√(3/2) h S_1=(√3 a^2)/4=(3√3 h^2)/8 S_(п.п.)=4S_1=(3√3 h^2)/2

Через высоту, подставленную вместо ребра в определенном соотношении можно найти соответственно и радиусы вписанной и описанной окружностей в основание тетраэдра. r=h/(2√2) R=h/√2

Апофема тетраэдра проходит из вершины к противоположной стороне грани под прямым углом и рассчитать ее можно как из прямоугольного треугольника с боковым ребром по той же грани, так и из прямоугольного треугольника во внутреннем пространстве тетраэдра с высотой. l=3h/(2√2)

Чтобы вычислить объем тетраэдра, необходимо возвести в куб ребро и разделить полученное значение на шесть корней из двух, либо подставить вместо ребра корень из трех вторых, умноженный на высоту и преобразовать формулу объема для высоты. V=(√3 h^3)/8

В тетраэдр можно вписать сферу или описать сферу около него, тогда, зная высоту, чтобы вычислить радиусы вписанной и описанной сфер, необходимо воспользоваться следующими, уже готовыми формулами. (рис.60.2, 60.3) r_1=h/4 R_1=3h/4

💥 Видео

Тетраэдр. 10 класс.Скачать

Тетраэдр. 10 класс.

Нахождение высоты тетраэдра.Скачать

Нахождение высоты тетраэдра.

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

10 класс, 12 урок, ТетраэдрСкачать

10 класс, 12 урок, Тетраэдр

Задача C2: координаты вершин тетраэдраСкачать

Задача C2: координаты вершин тетраэдра

Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение

Уравнение высоты пирамиды (устар.)Скачать

Уравнение высоты пирамиды (устар.)

Уравнение прямой и треугольник. Задача про высотуСкачать

Уравнение прямой и треугольник. Задача про высоту

Уравнение высоты пирамидыСкачать

Уравнение высоты пирамиды

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

11 класс. Геометрия. Объём пирамиды. 28.04.2020.Скачать

11 класс. Геометрия. Объём пирамиды. 28.04.2020.

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой
Поделиться или сохранить к себе: