8.2. Исследование общего уравнения 2-й степени от двух переменных
8.2.1. Геометрическое представление ортогональных преобразований
Общее уравнение 2-й степени от двух переменных имеет вид:
где хотя бы одно из чисел . не равно 0. Наша цель — построить на плоскости такую систему координат, чтобы это уравнение имело наиболее простой вид. Это значит, что нам нужно выбрать новый базис и новое начало координат. Новый базис должен быть ортогональным (мы хотим работать в прямоугольной декартовой системе координат) и, более того, ортонормированным. Действительно, если длины базисных векторов изменятся, то изменится масштаб, и, например, эллипс может превратиться в окружность.
Линейное преобразование, которое переводит ортонормированный базис снова в ортонормированный базис является ортогональным (теорема 10 из 7.5.3). Линейная замена переменных, соответствующая переходу от одного ортонормированного базиса к другому, имеет ортогональную матрицу. Постараемся выяснить геометрический смысл таких преобразований.
Теорема 2. Ортогональное преобразование плоскости есть либо поворот, либо поворот с последующей осевой симметрией.
Доказательство. Пусть A : R 2 → R 2 — ортогональное преобразование плоскости. Было доказано, что ортонормированный базис i, j переходит снова в ортонормированный базис e1, e2. Изображая единичный вектор e1 произвольно, для e2 получаем две возможности:
Разложим векторы e1, e2 по базису i, j, чтобы найти матрицу преобразования A. В первом случае:
Преобразование A является поворотом на угол φ против часовой стрелки.
- Системы с нелинейными уравнениями
- Нелинейные уравнения с двумя неизвестными
- Системы из двух уравнений, одно из которых линейное
- Однородные уравнения второй степени с двумя неизвестными
- Системы из двух уравнений, одно из которых однородное
- Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
- Примеры решения систем уравнений других видов
- Изящные способы решения систем уравнений с двумя переменными второй степени
- 🔥 Видео
Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать
Системы с нелинейными уравнениями
Нелинейные уравнения с двумя неизвестными |
Системы из двух уравнений, одно из которых линейное |
Однородные уравнения второй степени с двумя неизвестными |
Системы из двух уравнений, одно из которых однородное |
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное |
Примеры решения систем уравнений других видов |
Видео:Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать
Нелинейные уравнения с двумя неизвестными
Определение 1 . Пусть A – некоторое множество пар чисел (x ; y) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.
Задание числовой функции z от двух переменных x и y часто обозначают так:
z = f (x , y) , | (1) |
причем в записи (1) числа x и y называют аргументами функции , а число z – значением функции , соответствующим паре аргументов (x ; y) .
Определение 2 . Нелинейным уравнением с двумя неизвестными x и y называют уравнение вида
f (x , y) = 0 , | (2) |
где f (x , y) – любая функция, отличная от функции
где a , b , c – заданные числа.
Определение 3 . Решением уравнения (2) называют пару чисел (x ; y) , для которых формула (2) является верным равенством.
Пример 1 . Решить уравнение
x 2 – 4xy + 6y 2 – – 12 y +18 = 0 . | (3) |
Решение . Преобразуем левую часть уравнения (3):
Таким образом, уравнение (3) можно переписать в виде
(x – 2y) 2 + 2(y – 3) 2 = 0 . | (4) |
Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений
решением которой служит пара чисел (6 ; 3) .
Пример 2 . Решить уравнение
sin (xy) = 2 . | (5) |
вытекает, что уравнение (5) решений не имеет.
Ответ : Решений нет.
Пример 3 . Решить уравнение
ln (x – y) = 0 . | (6) |
Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида
где y – любое число.
Видео:Приёмы решения систем уравнений второй степени с двумя переменными | Алгебра 9 класс #23 | ИнфоурокСкачать
Системы из двух уравнений, одно из которых линейное
Определение 4 . Решением системы уравнений
называют пару чисел (x ; y) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.
Системы из двух уравнений, одно из которых линейное, имеют вид
где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .
Пример 4 . Решить систему уравнений
(7) |
Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:
Таким образом, решениями системы (7) являются две пары чисел
и
Ответ : (– 1 ; 9) , (9 ; – 1)
Видео:Алгебра 9 класс (Урок№29 - Приёмы решения систем уравнений второй степени с двумя переменными.)Скачать
Однородные уравнения второй степени с двумя неизвестными
Определение 5 . Однородным уравнением второй степени с двумя неизвестными x и y называют уравнение вида
где a , b , c – заданные числа.
Пример 5 . Решить уравнение
3x 2 – 8xy + 5y 2 = 0 . | (8) |
Решение . Для каждого значения y рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного x . Тогда дискриминант D квадратного уравнения (8) будет выражаться по формуле
откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):
Ответ . Решениями уравнения (8) являются все пары чисел вида
( y ; y) или
где y – любое число.
Следствие . Левую часть уравнения (8) можно разложить на множители
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Системы из двух уравнений, одно из которых однородное
Системы из двух уравнений, одно из которых однородное, имеют вид
где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .
Пример 6 . Решить систему уравнений
(9) |
рассматривая его как квадратное уравнение относительно неизвестного x :
.
В случае, когда x = – y , из второго уравнения системы (9) получаем уравнение
корнями которого служат числа y1 = 2 , y2 = – 2 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 2) , (2 ; – 2) .
,
из второго уравнения системы (9) получаем уравнение
которое корней не имеет.
Ответ : (– 2 ; 2) , (2 ; – 2)
Видео:Решение систем уравнений второго порядка. 8 класс.Скачать
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
Пример 7 . Решить систему уравнений
(10) |
Решение . Совершим над системой (10) следующие преобразования:
- второе уравнение системы оставим без изменений;
- к первому уравнению, умноженному на 5 , прибавим второе уравнение, умноженное на 3 , и запишем полученный результат вместо первого уравнения системы (10).
В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:
(11) |
рассматривая его как квадратное уравнение относительно неизвестного x :
.
В случае, когда x = – 5y , из второго уравнения системы (11) получаем уравнение
которое корней не имеет.
,
из второго уравнения системы (11) получаем уравнение
,
корнями которого служат числа y1 = 3 , y2 = – 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 3) , (2 ; – 3) .
Ответ : (– 2 ; 3) , (2 ; – 3)
Видео:Алгебра 9 класс (Урок№25 - Решение систем уравнений второй степени.)Скачать
Примеры решения систем уравнений других видов
Пример 8 . Решить систему уравнений (МФТИ)
Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:
(13) |
Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что
(14) |
Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:
- первое уравнение системы оставим без изменений;
- из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.
В результате система (14) преобразуется в равносильную ей систему
из которой находим
(15) |
Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде
(16) |
У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы:
Следовательно, решениями системы (16) являются две пары чисел
Из формул (13) вытекает, что , поэтому первое решение должно быть отброшено. В случае u2 = 5, v2 = 2 из формул (15) находим значения x и y :
Определение 6 . Решением системы из двух уравнений с тремя неизвестными называют тройку чисел (x ; y ; z) , при подстановке которых в каждое уравнение системы получается верное равенство.
Пример 9 . Решить систему из двух уравнений с тремя неизвестными
(17) |
Решение . У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное z через неизвестные x и y и подставить это выражение во второе уравнение системы:
(18) |
Перепишем второе уравнение системы (18) в другом виде:
Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае x = 4, y = 4 .
Ответ : (4 ; 4 ; – 4)
Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».
Видео:Решение задач с помощью систем уравнений второй степени. Алгебра, 9 классСкачать
Изящные способы решения систем уравнений с двумя переменными второй степени
Разделы: Математика
Цели урока:
- рассмотреть интересные способы решения систем уравнений с двумя переменными второй степени;
- продолжить работу по формированию у учащихся умений решать системы уравнений с двумя переменными различными способами;
- развивать логическое мышление, способность к абстрагированию, анализу.
Ход урока
Решение систем, содержащих два уравнения с двумя переменными второй степени весьма трудная задача, но в некоторых случаях системы могут быть решены с помощью простых и изящных приемов. Открыть некоторые из них – это цель сегодняшнего урока.
I. Проверка домашнего задания.
Решить систему уравнений способом подстановки и графически.
Первый ученик показывает решение системы уравнений:
(1) | — способом подстановки. |
1) ху=-3; | |
2) |
умножим обе части уравнения на ,получим:пусть и 0,тогда по теореме, обратной теореме Виета, получим:
Если z =9,то ,
z =1, то
-3,-1,1,3 отличны от нуля, значит, они являются корнями уравнения
3) Если то | то |
то | то |
Ответ:(3;-1), (-3;1), (-1;3), (1;-3)-решения системы (1).
Второй ученик показывает решение системы уравнений:
— графическим способом. |
В одной системе координат построим графики уравнений: и ху= -3.
-графиком этого уравнения является окружность с центром в точке (0;0) и радиусом .
В треугольнике АВС,АВС =90°, АВ=1, ВС=3, АС=.
Длину отрезка АС= возьмем за радиус окружности .
ху=3; у=; — графиком этого уравнения является гипербола, ветви которой расположены во II и IV координатных углах.
х | -6 | -3 | -1 | -0.5 | 0.5 | 1 | 3 | 6 |
у | 0.5 | 1 | 3 | 6 | -6 | -3 | -1 | -0.5 |
Графики изображены на рисунке 1.
Графики и пересекаются в четырех точках (они обозначены буквами А, В, С, Д), следовательно, данная система уравнений имеет четыре решения:
Интересно заметить, что решения данной системы симметричны. Точки С и В и А и Д симметричны относительно начала координат. Точки С и А и Д и В симметричны относительно биссектрисы I и III координатных углов (прямой у=х), поэтому их координаты “меняются местами”.
II. “Открытие” новых способов решения этой же системы.
Для решения этой системы есть более изящные и красивые способы. Открыть их, понять и научиться применять — это цель нашего урока. Поставив цель мы в конце урока должны подвести итог нашей работе, для этого мы будем использовать идею Эдварда де Боно, которую он назвал “Шесть шляп — шесть способов мышления”- они нам и помогут с разных позиций проанализировать урок, работая в группах.
Работа в группах.
Решить систему новым способом (на работу 5-7мин.).
Свое решение на доске показывает одна из групп:
(1)
Система (1) “распадается” на две более простые системы:
(2) | (3) |
Каждое решение системы (1) является решением хотя бы одной из систем (2) или (3).И каждое решение системы (2) и (3) является решением системы (1).
Системы (2) и (3) является симметричными, решим каждую из них:
(1) | (2) |
Пусть и корни уравнения | Пусть и корни уравнения |
и его корни, решения системы (1). | и его корни, решения системы (2) |
Для того чтобы понять содержательную сторону приведенного решения, обратимся к графической иллюстрации. На рис.2 в одной системе координат показано графическое решение систем.
и
Каждая прямая х+у =2 и х+у =-2 пересекает гиперболу ху=-3 в двух точках, а всего мы имеем четыре точки пересечения (они обозначены буквами А, В, С, Д). Это те же точки, которые получились при пересечение гиперболы и окружности (смотри рис.1).
Еще один способ решения данной системы представил один из учеников, для которого это было домашнее индивидуальное задание.
Сложим почленно первое уравнение системы сначала с уравнением 2ху=-6,а затем с уравнением -2ху=6.Получим систему:
Из первого уравнения получаем, что
Из второго уравнения получаем, что
Рассматривая каждое уравнение первой строки совместно с каждым уравнение второй строки приходим к четырем системам линейных уравнений:
Решив каждую из них получим следующие решения исходной системы:
Решение проиллюстрировано графически на рис.3.
Теперь мы видим, что четыре прямые при попарном пересечении указывают нам те же самые точки, которые получились при пересечении окружности и гиперболы (смотри рис.1).
И еще разберем один из способов решения системы
Данная система является симметричной и решается она очень красиво с помощью введения новых переменных. Пусть , и учитывая, что ,получим:
Если u=-3, то или тогда получим:
и |
Полученные системы тоже являются симметричными системами, которые мы уже решали. Итак,(3;1), (-1;3), (-3;1),(1;-3)-решения данной системы.
Мы рассмотрели пять различных способов решения одной и той же системы уравнений. Каждый выберет для себя способ, который ему больше всего понравился, самое главное — что каждый из Вас научился решать системы такого вида и поэтому эпиграфом урока могли служить слова Б.В.Гнеденко: “Ничто так не содействует усвоению предмета, как действие с ним в разных ситуациях”.
1 задание. Решить систему уравнений:
2 задание. На рисунке 4 построены: окружность парабола и прямая у=2х+10.Составьте всевозможные системы двух уравнений с двумя переменными и укажите их решения.
3 задание. Система уравнений. где b-произвольное число, может иметь одно, два, три или четыре решения, а также может не иметь решений. Запишите конкретную систему, которая имела бы два решения. Проиллюстрируйте решение системы, графически на рисунке 5.
1 задание. Решить систему уравнений:
2 задание. На рисунке 6 построены кубическая парабола у=х, гипербола у= и прямая у=2х.
Составьте всевозможные системы двух уравнений с двумя переменными и укажите их решения.
3 задание. Система уравнений где b- произвольное число, может иметь одно, два, три или четыре решения, а также может не иметь решений. Запишите конкретную систему, которая имела бы одно решение. Проиллюстрируйте решение графически на рисунке 5.
IV. Подведение итогов урока.
Для анализа урока мы будем использовать идею Эдварда де Боно, которую он назвал “Шесть шляп”.
Зелёная шляпа-символ свежей листвы, изобилия и плодородия. Она символизирует творческое начало и расцвет новых идей.
Итак, первая группа ответит на вопросы: пригодятся ли нам знания, полученные на уроке, умения исследовать и находить различные способы решения систем уравнений?
Жёлтая шляпа — солнечный, жизнеутверждающий цвет. Она полна оптимизма, под ней живёт надежда и позитивное мышление.
Итак, вторая группа отметит какие положительные моменты были на уроке и обоснует свой оптимизм.
Белая шляпа — белый цвет беспристрастен и объективен. В ней “варятся” мысли, “замешанные” на цифрах и фактах.
Итак, третья группа должна изложить происходящее на уроке опираясь и подкрепляя свой ответ цифрами и фактами.
Красная шляпа-символ восприятия действительности на уровне чувств. В ней можно отдать себя во власть эмоций.
Итак, четвёртая группа постарается высказать свои эмоции по поводу данного урока.
Чёрная шляпа — черный цвет мрачный, зловещий, словом — недобрый. Это критика, доходящая до въедливости.
Итак, пятая группа должна высказать свое мнение о том, что получилось на уроке или что требует доработки.
Синяя шляпа — синий цвет холодный, это цвет неба. Синяя шляпа связана с организацией, обобщением того, что достигнуто.
Итак, шестая группа при подведении итогов урока должна указать, на что необходимо обратить внимание при изучении данной темы?
V. Домашнее задание.
А.П. Ершова, В.В. Голобородько “Самостоятельные и контрольные работы по алгебре и геометрии для 9 класса” (разноуровневые дидактические материалы). С-9,стр. 19 (по уровням сложности)
🔥 Видео
Решение систем уравнений второй степениСкачать
ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Графический способ решения систем уравнений. Алгебра, 9 классСкачать
9 класс, 11 урок, Методы решения систем уравненийСкачать
Системы уравнений с двумя переменными. Алгебра 9 классСкачать
П.23 Некоторые приемы решения систем уравнений второй степени - Алгебра 9 класс МакарычевСкачать
Системы уравнений с двумя переменными - 9 класс алгебраСкачать
Решение уравнений с двумя переменными второй степениСкачать
Как решают уравнения в России и СШАСкачать
Некоторые приёмы решения систем уравнений второй степени с двумя переменнымиСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Линейное уравнение с двумя переменными. 7 класс.Скачать