Составить уравнение окружности, вписанной в треугольник, стороны которого лежат на прямых x = 0, y = 0 и 3x + 4y — 12 = 0.
найдем координаты вершин треугольника, решив следующие системы уравнений:
Этот треугольник прямоугольный, так как прямые x = 0 и y = 0 перпендикулярны. Пусть r — радиус вписанной окружности в треугольник, S — площадь треугольника, p — полупериметр треугольника. Тогда
и .
Так как окружность касается прямых x = 0 и y = 0, то координаты центра окружности — (r; r) или (1; 1).
Итак, искомое уравнение окружности (x — 1) 2 + (y — 1) 2 = 1.
Видео:Уравнение окружности описанной около треугольникаСкачать
Окружность в треугольнике
В каждый треугольник можно вписать окружность, притом только одну.
Центр вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.
Пример
В приведенном ниже примере, O является центров окружности.
Метод расчета центра окружности вписанного в треугольник
Даны точки вершин треугольника A(5,7), B(6,6) и C(2,-2). Итак, нам известны координаты точек вершин треугольника x1,y1, x2,y2 и x3,y3.
Для нахождения точки центра вписанной окружности необходимо найти уравнение биссектрисы.
Шаг 1 :
Давайте рассчитаем средние точки всех сторон треугольника AB, BC и CA заданных координатами x и y
- Средняя точка стороны = x1+x2/2, y1+y2/2
- Средняя точка AB = 5+6/2, 7+6/2 = (11/2, 13/2)
- Средняя точка BC = 6+2/2, 6-2/2 = (4, 2)
- Средняя точка CA = 2+5/2, -2+7/2 = (7/2, 5/2)
Шаг 2 :
Далее, найдем углы сторон AB, BC и CA используя формулу y2-y1/x2-x1. Пожалуйста, обратите внимание, что угол обозначается буквой ‘m’.
- Угол AB (m) = 6-7/6-5 = -1.
- Угол BC (m) = -2-6/2-6 = 2.
- Угол CA (m) = 7+2/5-2 = 3.
Шаг 3 :
Теперь, давайте вычислить угол биссектрисы сторон AB, BC и CA.
- Угол биссектрисы = -1/угол линии (стороны).
- Угол биссектрисы стороны AB = -1/-1 = 1
- Угол биссектрисы стороны BC = -1/2
- Угол биссектрисы стороны CA = -1/3
Шаг 4 :
После того, как мы находим угол перпендикулярных линий, мы должны найти уравнение перпендикуляра, биссектрис с углом и серединой. Уравнение перпендикуляра АВ с серединами (11/2, 13/2) и углом 1.
Уравнение центра окружности y-y1 = m(x-x1)
Упростив, мы получим уравнение -x + y = 1
Кроме того, мы должны найти уравнение перпендикуляра, биссектрис линий BE и CF.
Для BC с средней точкой (4,2) и углом -1/2 y-2 = -1/2(x-4)
Упростив, мы получим уравнение x + 2y = 8
Для CA с средней точкой (7/2,5/2) и углом -1/3 y-5/2 = -1/3(x-7/2)
Упростив, мы получим уравнение x + 3y = 11
Шаг 5 :
Найдем значения x и y решив любые 2 из указанных 3 уравнений.
В этом примере, значение x и y равны (2,3) которые являются координатами центра (o) вписанной окружности в треугольник.
Видео:Радиус описанной окружностиСкачать
Центр и радиус вписанной окружности в треугольник
Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника. Радиус окружности, вписанной в любой треугольник, равняется удвоенной площади треугольника, деленной на его периметр.
Центр и радиус вписанной окружности в треугольник через координаты его вершин
Известны координаты вершин треугольника и известный координаты точки. Нужно установить принадлежность точки треугольнику.
Существует несколько способов определения. лежит-ли точка внутри треугольника или снаружи:
1. Метод сравнения площадей — по формуле Герона находятся площади 3-х треугольников которые образует точка с каждой стороной треугольника, далее находится площадь самого треугольника и сравнивается с суммой 3ех предыдущих треугольников, если суммы равны то значит точка принадлежит треугольнику.
2. Метод относительности — выбирается ориентация движения по вершинам треугольника, например по часовой стрелке. По данной ориентации проходим все стороны треугольника, рассматривая их как прямые, и рассчитываем по какую сторону от текущей прямой лежит наша точка. Если точка для всех прямых, лежит с правой стороны, то значит точка принадлежит треугольнику, если хоть для какой-то прямой она лежит с левой стороны, то значит условие принадлежности не выполняется.
3. Метод геометрического луча — из точки пускается луч по какой-либо оси в каком-либо направлении. Вычисляется количество пересечений со сторонами, если кол-во нечётное, то значит точка лежит внутри многоугольника.
📸 Видео
Окружность вписанная в треугольник и описанная около треугольника.Скачать
№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать
Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать
Задание 24 ОГЭ по математике #7Скачать
Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать
Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать
Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Построить описанную окружность (Задача 1)Скачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Окружность вписана в равносторонний треугольник, найти радиусСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
Строим вписанную в данный треугольник окружность (Задача 2).Скачать
ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать
начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать