Уравнение восьмерки в полярных координатах

Уравнения кривых. Лемниската Бернулли.

Лемниската Бернулли — кривая, у которой произведение расстояний от каждой её точки до двух определенных точек (фокусов) неизменно и равняется квадрату половины расстояния между ними. Место пересечения лемнискаты с самой собой принято называть узловой или двойной точкой.

Форма лемнискаты похожа на восьмерку (символ бесконечности).

Уравнение восьмерки в полярных координатах

(х 2 + у 2 ) 2 = 2 а 2 (х 2 — у 2 ).

Полярное уравнение имеет вид:

Длина дуги лемнискаты между точками, для которых φ1= 0 и φ2= φ:

Уравнение восьмерки в полярных координатах.

Площадь сектора ограниченного осью и радиус-вектором, соответствующим углу φ:

Уравнение восьмерки в полярных координатах

Площадь, локализованную лемнискатой:

Видео:§12 Полярное уравнение прямойСкачать

§12 Полярное уравнение прямой

СПЕЦИАЛЬНЫЕ ПЛОСКИЕ КРИВЫЕ

ЛЕМНИСКАТЫ
Уравнение в полярных координатах:
r 2 = a 2 cos2θ

Уравнение в прямоугольных координатах:
(x 2 + y 2 ) 2 = a 2 (x 2 — y 2 )

Угол между AB’ или A’B и осью x = 45 o

Площадь одной петли = a 2 /2
Уравнение восьмерки в полярных координатах

ЦИКЛОИДА
Уравнения в параметрической форме:
Уравнение восьмерки в полярных координатах

Площадь одной дуги = 3πa 2

Длина дуги одной арки = 8a

Это кривая, описываемая точкой Р на окружности радиусом а, которая катится вдоль оси х.
Уравнение восьмерки в полярных координатах

ГИПОЦИКЛОИДЫ С ЧЕТЫРЬМЯ ОСТРИЯМИ
Уравнение в прямоугольных координатах:
x 2/3 + y 2/3 = a 2/3

Уравнения в параметрической форме:
Уравнение восьмерки в полярных координатах

Площадь, ограниченная кривой = 3πa 2 /8

Длина дуги целой кривой = 6a

Это кривая, описываемая точкой Р на окружности радиусом a/4, которая катится внутри окружности радиусом a.
Уравнение восьмерки в полярных координатах

КАРДИОИДА
Уравнение: r = a(1 + cosθ)

Площадь, ограниченная кривой = 3πa 2 /2

Длина дуги кривой = 8a

Это кривая, описываемая точкой Р на окружности радиусом a, которая катится снаружи окружности радиусом a. Эта кривая также является частным случаем улитки Паскаля.
Уравнение восьмерки в полярных координатах

ЦЕПНАЯ ЛИНИЯ
Уравнение:
y = a(e x/a + e -x/a )/2 = acosh(x/a)

Это кривая, по которой бы повисла цепь, подвешенная вертикально от точки А к В.
Уравнение восьмерки в полярных координатах

ТРЕХЛЕПЕСТКОВАЯ РОЗА
Уравнение: r = acos3θ

Уравнение r = acos3θ подобно кривой, полученной вращением против часовой стрелки по кривой 30 o или π/6 радиан.

В общем, r = acosnθ или r = asinnθ имеет n лепестков если n является нечетным.
Уравнение восьмерки в полярных координатах

ЧЕТЫРЕХЛЕПЕСТКОВАЯ РОЗА
Уравнение: r = acos2θ

Уравнение r = asin2θ подобно кривой, полученной вращением против часовой стрелки по кривой 45 o или π/4 радиан.

В общем r = acosnθ или r = asinnθ имеет 2n лепестков если n — четное.
Уравнение восьмерки в полярных координатах

ЭПИЦИКЛОИДА
Параметрические уравнения:
Уравнение восьмерки в полярных координатах

Это кривая, описываемая точкой Р на окружности радиуса b, когда она катится по внешней стороне окружности радиусом а. Кардиоида является частным случаем эпициклоиды.
Уравнение восьмерки в полярных координатах

ОБЩАЯ ГИПОЦИКЛОИДА
Параметрические уравнения:
Уравнение восьмерки в полярных координатах

Это кривая, описываемая точкой Р на окружности радиуса b, когда она катится по внешней стороне окружности радиусом а.

Если b = a/4, кривая является гипоциклоидой с четырьмя остриями.
Уравнение восьмерки в полярных координатах

ТРОХОИДА
Параметрические уравнения:
Уравнение восьмерки в полярных координатах

Это кривая, описываемая точкой Р на дистанции b от центра окружности с радиусом а, когда она катится по оси x.
Если b a, кривая имеет форму, показанную на рис. 11-11 и называется троходой.
Если b = a, кривая есть циклоидой.
Уравнение восьмерки в полярных координатах

ТРАКТРИСА
Параметрические уравнения:
Уравнение восьмерки в полярных координатах

Это кривая, описываемая конечной точкой Р натянутой струны длиной PQ, когда другой конец Q перемещается вдоль оси х.
Уравнение восьмерки в полярных координатах

ВЕРЗЬЕРА (ВЕРЗИЕРА) АНЬЕЗИ (ИНОГДА ЛОКОН АНЬЕЗИ)
Уравнение в прямоугольных координатах: y = 8a 3 /(x 2 + 4a 2 )

Параметрические уравнения:
Уравнение восьмерки в полярных координатах

В. На рисунке переменная линия OA пересекающая y = 2a и круг с радиусом a с центром (0,a) в A и B соотвественно. Любая точка P на «локоне» определяется построением линий, параллельных к осям x и y, и через B и A соответственно и определяющие точку пересечения P.
Уравнение восьмерки в полярных координатах

ДЕКАРТОВ ЛИСТ
Уравнение в прямоугольных координатах:
x 3 + y 3 = 3axy

Параметрические уравнения:
Уравнение восьмерки в полярных координатах

Площадь петли 3a 2 /2

Уравнение асимптоты: x + y + a = 0.
Уравнение восьмерки в полярных координатах

ЭВОЛЬВЕНТА ОКРУЖНОСТИ
Параметрические уравнения:
Уравнение восьмерки в полярных координатах

Эта кривая, описанная конечной точкой P струны, когда она разматывается с круга с радиусом a.
Уравнение восьмерки в полярных координатах

ЭВОЛЬВЕНТА ЭЛЛИПСА
Уравнение в прямоугольных координатах:
(ax) 2/3 + (by) 2/3 = (a 2 — b 2 ) 2/3

Параметрические уравнения:
Уравнение восьмерки в полярных координатах
Эта кривая является огибающей нормалью к эллипсу x 2 /a 2 + y 2 /b 2 = 1.
Уравнение восьмерки в полярных координатах

ОВАЛЫ КАССИНИ
Полярное уравнение: r 4 + a 4 — 2a 2 r 2 cos2θ = b 4 .

Это кривая, описываемая такой точкой P, что произведение ее расстояния от двух фиксированных точек [ расстояние 2a в сторону] есть постоянной b 2 .

Кривая, как на фигурах внизу, когда b a соответственно.

Если b = a, кривая есть лемниската
Уравнение восьмерки в полярных координатах

УЛИТКА ПАСКАЛЯ
Полярное уравнение: r = b + acosθ

Пусть OQ будет линией, соединяющей центр O с любой точкой Q на окружности диаметром a проходящей через O. Тогда кривая есть фокусом всех точек P, таких, что PQ = b.

Кривая, показанная на рисунках внизу когда b > a или b 2 = x 3 /(2a — x)

Параметрические уравнения:
Уравнение восьмерки в полярных координатах

Это кривая, описываемая такой точкой P, что расстояние OP = расстоянию RS. Используется в задаче удвоения куба, т.e. нахождения стороны куба, который имеет удвоенный объем заданного куба
Уравнение восьмерки в полярных координатах

СПИРАЛЬ АРХИМЕДА
Полярное уравнение: r = aθ
Уравнение восьмерки в полярных координатах

Видео:Скорость и ускорение точки в полярных координатахСкачать

Скорость и ускорение точки в полярных координатах

Построение графика неявно заданной функции на примере лемнискаты Бернулли

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Уравнение восьмерки в полярных координатах

Описание презентации по отдельным слайдам:

Уравнение восьмерки в полярных координатах

Тема: «Построение графика неявно заданной функции на примере лемнискаты Бернулли»

Проект
Гузь Ольги

Уравнение восьмерки в полярных координатах

Содержание.
1.Определение функции заданной неявно.
2.Определение лемнискаты.
3.Вывод уравнения лемнискаты.
4.Преобразование уравнения лемнискаты.
5.Уравнение лемнискаты в полярной системе координат.
6.Исследование уравнения лемнискаты.
7.Построение лемнискаты.
8. Применение лемнискаты.
9.Краткая историческая справка.

Уравнение восьмерки в полярных координатах

Определение неявно заданной функции
Рассмотрим функцию, заданную неявно уравнением F(x ,y)=0.
В зависимости от того, какой является функция F(x ,y)-алгебраической или трансцендентной,- кривые также делятся на алгебраические и трансцендентные.
Примеры, лемниската Бернулли.

Уравнение восьмерки в полярных координатах

Лемниската –
это кривая, у которой произведение расстояний каждой ее точки до двух заданных точек- фокусов -постоянно и равно квадрату половины расстояния между ними.

Уравнение восьмерки в полярных координатах

Пусть фокусы имеют координаты: F1(-a;0) и F2 (а;0); М(х, у) — произвольная точка геометрического места,
то по условию

Подставляя в это равенство выражения

получим искомое уравнение данного геометрического места

Вывод уравнения лемнискаты

Уравнение восьмерки в полярных координатах

Преобразование уравнения лемнискаты

Дальнейшая цель- получить уравнение лемнискаты Бернулли в более простом виде.
Возводя в квадрат обе части уравнения и группируя члены, находим

Уравнение восьмерки в полярных координатах

Преобразование уравнения лемнискаты
Преобразуя последнее уравнение, имеем:

или в окончательном виде

Мы получили уравнение лемнискаты в декартовой системе координат.

Уравнение восьмерки в полярных координатах

Построение графика лемнискаты

Т.к х и у входят в это уравнение только в чётных степенях, то лемниската симметрична относительно координатных осей.
Построить график данной функции затруднительно.
Запишем это же уравнение в полярной системе координат.

Уравнение восьмерки в полярных координатах

Уравнение лемнискаты в полярной системе координат

Поскольку х =ρ cos φ, у = ρ sinφ, х2+у2= ρ2, то уравнение лемнискаты в полярных координатах примет вид
ρ 4=2а2 ρ(cos2φ- sin2φ)
или

Уравнение восьмерки в полярных координатах

ρ 2=2а2 cos2φ
Из этого уравнения видно, что
при φ=0. Если φ увеличивается в пределах
от 0 до , то ρ уменьшается от до ρ=0.
Если , то ρ принимает мнимые
значения. Это означает, что на лемнискате нет точек, для которых φ меняется в указанных пределах.
Исследование уравнения лемнискаты

Уравнение восьмерки в полярных координатах

Построение лемнискаты
Построим график функции
при разных значениях а:

Уравнение восьмерки в полярных координатах

Уравнение восьмерки в полярных координатах

Построение лемнискаты
при а=-0,5

Уравнение восьмерки в полярных координатах

При построении кривых семейства овалов Кассини, промежуточным графиком является лемниската Бернулли.

1. 2. 3. 4.
Фигура выпуклая как эллипс.
Появляется вогнутая перемычка с четырьмя точками перегиба.
Перемычка смыкается, полученная фигура называется лемнискатой Бернулли.
Фигура разваливается на два овала.

Уравнение восьмерки в полярных координатах

В технике лемниската применяется, в частности, в качестве переходной кривой на закруглениях малого радиуса, как это имеет место на железнодорожных линиях в горной местности и на трамвайных путях.
Применение:

Уравнение восьмерки в полярных координатах

Существует два способа построения лемнискаты.
Первый способ — с помощью
двух угольников и нарисованной на листе бумаги окружности (рис.2).Вершина острого угла одного из угольников находится в центре окружности, вершина прямого угла другого -на окружности.
Способы построения лемнискаты
Рис.2

Уравнение восьмерки в полярных координатах

Второй способ — с помощью шарнирного устройства, две точки которого закреплены на плоскости (рис.3).
Способы построения лемнискаты
Рис.3

Уравнение восьмерки в полярных координатах

Лемниската Бернулли.
Ее автор – швейцарский математик Якоб Бернулли. Он дал этой кривой поэтическое название «лемниската».

В античном Риме так называли бантик, с помощью которого прикрепляли венок к голове победителя на спортивных играх.

Уравнение восьмерки в полярных координатах

БЕРНУЛЛИ Якоб I (1654-1705). Швейцарский математик. Работал в Базельском университете.
Работы посвящены математическому анализу, теории вероятностей и механике. В 1687 познакомился с первым мемуаром Лейбница по дифференциальному исчислению и применил его идеи к изучению ряда кривых, встречающихся в математике, механике, и выводу формулы радиуса кривизны плоской кривой. Ввел термин «интеграл».
Краткая биография

Уравнение восьмерки в полярных координатах

♣ Вирченко Н.А. и др.Справочник «Графики функций»; Киев: Наук. думка, 1979г;
♣ И.И.Валуцэ «Математика для техникумов»; Москва, Издательство «Наука», 1980г;
♣ Маркушевич А.И. «Замечательные кривые»; Москва 1978 г.
Список использованной литературы

Уравнение восьмерки в полярных координатах

Internet-ресурсы: WWW.Colledg.Ru;
WWW.5ballov.Ru; WWW.bankreferatov.Ru; WWW.rubricon.com.
Программное обеспечение: MS Word; MS Power Point;Windows Media; Nero Wave Editor; Сканер.

Список использованной литературы

Уравнение восьмерки в полярных координатах

Курс повышения квалификации

Охрана труда

  • Сейчас обучается 121 человек из 43 регионов

Уравнение восьмерки в полярных координатах

Курс профессиональной переподготовки

Охрана труда

  • Сейчас обучается 239 человек из 54 регионов

Уравнение восьмерки в полярных координатах

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • Сейчас обучается 354 человека из 64 регионов

Ищем педагогов в команду «Инфоурок»

Видео:Семинар 5. Переход к полярным координатам.Скачать

Семинар 5. Переход к полярным координатам.

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 591 432 материала в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 28.12.2020
  • 938
  • 13
  • 28.12.2020
  • 1000
  • 0
  • 28.12.2020
  • 1170
  • 0

Уравнение восьмерки в полярных координатах

  • 28.12.2020
  • 1279
  • 1
  • 28.12.2020
  • 1794
  • 4
  • 28.12.2020
  • 1227
  • 0
  • 28.12.2020
  • 1289
  • 0
  • 23.12.2020
  • 1329
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 10.07.2020 791
  • PPTX 1.1 мбайт
  • 3 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Якимова Светлана Семеновна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Уравнение восьмерки в полярных координатах

  • На сайте: 1 год и 1 месяц
  • Подписчики: 0
  • Всего просмотров: 28487
  • Всего материалов: 247

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Видео:Площадь фигуры, заданной в полярной системе координатСкачать

Площадь фигуры, заданной в полярной системе координат

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Уравнение восьмерки в полярных координатах

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Уравнение восьмерки в полярных координатах

В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

Время чтения: 0 минут

Уравнение восьмерки в полярных координатах

В приграничных пунктах Брянской области на день приостановили занятия в школах

Время чтения: 0 минут

Уравнение восьмерки в полярных координатах

В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

Время чтения: 1 минута

Уравнение восьмерки в полярных координатах

Минобрнауки создаст для вузов рекомендации по поддержке молодых семей

Время чтения: 1 минута

Уравнение восьмерки в полярных координатах

Минпросвещения упростит процедуру подачи документов в детский сад

Время чтения: 1 минута

Уравнение восьмерки в полярных координатах

Курские власти перевели на дистант школьников в районах на границе с Украиной

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

🎥 Видео

Глаза гипножабы и площадь фигур в полярной системе координатСкачать

Глаза гипножабы и площадь фигур в полярной системе координат

Полярная система координат.Скачать

Полярная система координат.

§53 Связь между полярными и декартовыми координатамиСкачать

§53 Связь между полярными и декартовыми координатами

Полярные в декартовыеСкачать

Полярные в декартовые

Оператор Лапласа в полярных координатахСкачать

Оператор Лапласа в полярных координатах

Вычислить двойной интеграл, перейдя к полярным координатамСкачать

Вычислить двойной интеграл, перейдя к полярным координатам

Площади полярных роз через двойной интегралСкачать

Площади полярных роз через двойной интеграл

Площадь фигуры через двойной интеграл в полярных координатахСкачать

Площадь фигуры через двойной интеграл в полярных координатах

Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать

Математика Без Ху!ни. Полярные координаты. Построение графика функции.

Полярная система координатСкачать

Полярная система координат

Замена переменных в двойном интеграле. Полярные координаты. Пример 1.Скачать

Замена переменных в двойном интеграле. Полярные координаты. Пример 1.

§55 Цилиндрическая система координатСкачать

§55 Цилиндрическая система координат

A.6.6 Переход между декартовой и другими системами координатСкачать

A.6.6 Переход между декартовой и другими системами координат

Rectangular to Polar CoordinateСкачать

Rectangular to Polar Coordinate

Как использовать интеграл в обычной жизни. Математик МГУ и Савватеев #shortsСкачать

Как использовать интеграл в обычной жизни. Математик МГУ и Савватеев #shorts

Двойной интеграл (ч.25). Вычисление в полярных координатах. Высшая математика.Скачать

Двойной интеграл (ч.25).  Вычисление в полярных координатах. Высшая математика.
Поделиться или сохранить к себе: