Уравнение вант гоффа энергия гиббса

ИЗОТЕРМА ВАНТ — ГОФФА, ВЫВОД И АНАЛИЗ

Константа равновесия определяют условия равновесия, когда концентрация (парциальные давления) является равновесными. В каком направлении пойдёт химическая реакция, если парциальное давление исходных веществ и продуктов реакции отличаются от равновесных? Ответить на этот вопрос поможет уравнение изотермы химической реакции.

Рассмотрим уравнение реакции: aA + bB ↔ cC + dD

Для изобарно-изотермического процесса изменение Гиббса равно:

Уравнение вант гоффа энергия гиббса

Уравнение вант гоффа энергия гиббсаP’- неравновесное, парциальное давление компонентов.

где Уравнение вант гоффа энергия гиббса= Уравнение вант гоффа энергия гиббса

Уравнение вант гоффа энергия гиббса

Уравнение вант гоффа энергия гиббса

Уравнение вант гоффа энергия гиббса— по форме записи напоминает константу равновесия, но отличается тем, что вместо равновесных давлений в него входят величины давления в данный момент времени.

Уравнение вант гоффа энергия гиббса

( Уравнение вант гоффа энергия гиббса) — это выражение, куда входят величины концентраций в данный момент времени.

Уравнение вант гоффа энергия гиббса

АНАЛИЗ ИЗОТЕРМЫ ВАНТ-ГОФФА

1. Главное значение изотермы реакции состоит в том, что она позволяет рассчитать ∆Gили ∆Fобратимый реакции для заданного состава реакционной смеси и определить, в каком направлении, и до какого предела протекает реакция при известных условиях.

а) Если Кр˃Кр’, то lnКр˃lnКр’; ∆G˂0- реакция идет самопроизвольно в прямом направлении.

б) Если Кр˂Кр’, то lnКр˂lnКр’; ∆G˃0- реакция протекает самопроизвольно в обратном направлении, в сторону образования продуктов.

в) Если Кр=Кр’, то lnКр=lnКр’; ∆G=0- равновесие.

Если парциальное давление всех участников реакции в данный момент времени равны атмосферному давлению

Пусть PA’=PB’=PC’=PD’=1( 1,013*10 5 Па), тоKp’=1; Тогда логарифм этого выражения будет равен нулю (lnKp’=0), а уравнение изотермы Вант – Гоффа примет вид:

∆G⁰=RTlnKp-стандартная энергия Гиббса

Выразм константу равновесия из последнего уравнения и получим:

Уравнение вант гоффа энергия гиббса

Уравнение вант гоффа энергия гиббса

Уравнение вант гоффа энергия гиббсаПример решения задачи:

В объеме 10л, взяли: 320(г) О2 , 10(г) Н2 и 180(г) паров воды . Определите, в какую направлении пойдёт химическая реакция: Уравнение вант гоффа энергия гиббса, если при температуре Т

(Кс=10). Процесс изохорный.

Уравнение вант гоффа энергия гиббса

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса

Уравнение вант гоффа энергия гиббса˂0 — реакция идет в прямом направлении.

ВЛИЯНИЕ ВНЕШНИХ УСЛОВИЙ НА КОНСТАНТУ

РАВНОВЕСИЯ. УРАВНЕНИЕ ИЗОБАРЫ И ИЗОХОРЫ ВАНТ-ГОФФА (В-Г)

Константы равновесия — это величины постоянные при данной температуре. При изменении температуры константа равновесия изменяется, и довольно существенно.

Изменение константы равновесия и направления химической реакции в зависимости от температуры количественно характеризует уравнение изобары изохоры химической реакции.

ВЫВОД УРАВНЕНИЯ ИЗОБАРЫ И ИЗОХОРЫ

Разделим уравнение изотермы Вант- Гоффа на температуру:

Уравнение вант гоффа энергия гиббса

Продифференцируем его по Т и перепишем:

Уравнение вант гоффа энергия гиббса

Представим уравнение Гиббса – Гельмгольца в виде:

Уравнение вант гоффа энергия гиббса

Из уравнения (1) вычтем уравнение (2):

Уравнение вант гоффа энергия гиббса

Уравнение вант гоффа энергия гиббса

Уравнение вант гоффа энергия гиббса

Эти уравнения показывают влияния температуры на константу равновесия, где определяющим фактором является тепловой эффект химической реакции.

Влияние температуры на константу равновесия определяется типом реакци.

1. Если тепловой эффект реакци ∆H(∆U)˃0(эндотермическая, поглощение), то Уравнение вант гоффа энергия гиббса˃0, тогда при увеличении температуры (Т↑) константа равновесия Кр увеличивается.

В обратном — Т↓,Кр↓.

2. Если ∆H(∆U)˂0 (экзотермическая, выделение), то Уравнение вант гоффа энергия гиббса˂0, тогда при повышении температуры константа равновесия Кр уменьшается или Кр увеличивается при понижении температуры.

В обратном — Т↑,Кр↓.

3. Если ∆H(∆U)=0 , тов этом случае константа равновесия не зависит от температуры Кp ≠ f(T).

ИНТЕГРИРОВАНИЕ ИЗОБАРЫ В-Г

1. Приближенное интегрирование ∆Н ≠ f(Т),

тогда Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббса.

Уравнение вант гоффа энергия гиббса

С помощью этого уравнения можно найти:

1. ∆Н (тепловой эффект реакции), если известны равновесия при двух различных температурах (Кр11) и Кр22))

2. Кр22) – константу равновесия при температуре Т2, если известна константа равновесия при другой температуре и тепловой эффект реакции (Кр11) и ∆Н).

Так как после интегрирования мы получили уравнение прямой, то эта зависимость может быть представлена на графике: lnKp(1) lnKp(2)

Уравнение вант гоффа энергия гиббса

Тангенс угла наклона прямой реакции, исходя из уравнения прямой:

Уравнение вант гоффа энергия гиббса;.

Зависимость теплового эффекта от температуры выражается уравнением:

Уравнение вант гоффа энергия гиббса

Подставим это уравнение в уравнение изобары Вант- Гоффа:

Уравнение вант гоффа энергия гиббса;

Уравнение вант гоффа энергия гиббсапри Т=0(К)

Проинтегрируем это уравнение и получим:

Уравнение вант гоффа энергия гиббса;

где В — постоянная интегрирования, для нахождения необходимо знать значения константы равновесия Кр при любой фиксированной температуре.

Однако проводить расчеты с использованием данного уравнения довольно сложно и используется довольно редко.

Пример. Определим изменение эффекта реакции Fe+H2O+FeO+H2, если для Т1=900К, Кр1=1,452, а для Т2=1025К Кр2=1,285.

Используем уравнение: Уравнение вант гоффа энергия гиббса

При повышении температуры от 900 до 1025К выделится дополнительно 7,5 кДж/моль теплоты.

|следующая лекция ==>
Метод статистического моделирования нагрузки на ЭВМ|Строение и характеристика макроэргических соединений на примереАТФ

Дата добавления: 2016-02-02 ; просмотров: 9784 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:Решение задач на тему: "Правило Вант-Гоффа". 1 часть. 10 класс.Скачать

Решение задач на тему: "Правило Вант-Гоффа". 1 часть. 10 класс.

Уравнение вант гоффа энергия гиббса

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

Конспект лекций для студентов биофака ЮФУ (РГУ)

1.7 ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Как было показано выше, протекание самопроизвольного процесса в термодинамической системе сопровождается уменьшением свободной энергии системы (dG 2 Y > 0. Таким образом, условием термодинамического равновесия в закрытой системе является минимальное значение соответствующего термодинамического потенциала :

Изобарно-изотермические (P = const, T = const):

Изохорно-изотермические (V = const, T = const):

Состояние системы с минимальной свободной энергией есть состояние термодинамического равновесия:

Термодинамическим равновесием называется такое термодинамическое состояние системы, которое при постоянстве внешних условий не изменяется во времени, причем эта неизменяемость не обусловлена каким-либо внешним процессом.

Учение о равновесных состояниях – один из разделов термодинамики. Далее мы будем рассматривать частный случай термодинамического равновесного состояния – химическое равновесие. Как известно, многие химические реакции являются обратимыми, т.е. могут одновременно протекать в обоих направлениях – прямом и обратном. Если проводить обратимую реакцию в закрытой системе, то через некоторое время система придет в состояние химического равновесия – концентрации всех реагирующих веществ перестанут изменяться во времени. Необходимо отметить, что достижение системой состояния равновесия не означает прекращения процесса; химическое равновесие является динамическим, т.е. соответствует одновременному протеканию процесса в противоположных направлениях с одинаковой скоростью. Химическое равновесие является подвижным – всякое бесконечно малое внешнее воздействие на равновесную систему вызывает бесконечно малое изменение состояния системы; по прекращении внешнего воздействия система возвращается в исходное состояние. Ещё одним важным свойством химического равновесия является то, что система может самопроизвольно прийти в состояние равновесия с двух противоположных сторон. Иначе говоря, любое состояние, смежное с равновесным, является менее устойчивым, и переход в него из состояния равновесия всегда связан с необходимостью затраты работы извне.

Количественной характеристикой химического равновесия является константа равновесия, которая может быть выражена через равновесные концентрации С, парциальные давления P или мольные доли X реагирующих веществ. Для некоторой реакции

Уравнение вант гоффа энергия гиббса

соответствующие константы равновесия выражаются следующим образом:

Уравнение вант гоффа энергия гиббса(I.78) Уравнение вант гоффа энергия гиббса(I.79)

Уравнение вант гоффа энергия гиббса(I.80)

Константа равновесия есть характерная величина для каждой обратимой химической реакции; величина константы равновесия зависит только от природы реагирующих веществ и температуры. Выражение для константы равновесия для элементарной обратимой реакции может быть выведено из кинетических представлений.

Рассмотрим процесс установления равновесия в системе, в которой в начальный момент времени присутствуют только исходные вещества А и В. Скорость прямой реакции V1 в этот момент максимальна, а скорость обратной V2 равна нулю:

Уравнение вант гоффа энергия гиббса(I.81)

Уравнение вант гоффа энергия гиббса(I.82)

По мере уменьшения концентрации исходных веществ растет концентрация продуктов реакции; соответственно, скорость прямой реакции уменьшается, скорость обратной реакции увеличивается. Очевидно, что через некоторое время скорости прямой и обратной реакции сравняются, после чего концентрации реагирующих веществ перестанут изменяться, т.е. установится химическое равновесие.

Приняв, что V1 = V2, можно записать:

Уравнение вант гоффа энергия гиббса(I.83)

Уравнение вант гоффа энергия гиббса(I.84)

Т.о., константа равновесия есть отношение констант скорости прямой и обратной реакции. Отсюда вытекает физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л.

Теперь рассмотрим (с некоторыми упрощениями) более строгий термодинамический вывод выражения для константы равновесия. Для этого необходимо ввести понятие химический потенциал . Очевидно, что величина свободной энергии системы будет зависеть как от внешних условий (T, P или V), так и от природы и количества веществ, составляющих систему. В случае, если состав системы изменяется во времени (т.е. в системе протекает химическая реакция), необходимо учесть влияние изменения состава на величину свободной энергии системы. Введем в некоторую систему бесконечно малое количество dni молей i-го компонента; это вызовет бесконечно малое изменение термодинамического потенциала системы. Отношение бесконечно малого изменения величины свободной энергии системы к бесконечно малому количеству компонента, внесенному в систему, есть химический потенциал μ i данного компонента в системе:

Уравнение вант гоффа энергия гиббса(I.85)

Уравнение вант гоффа энергия гиббса(I.86)

Химический потенциал компонента связан с его парциальным давлением или концентрацией следующими соотношениями:

Уравнение вант гоффа энергия гиббса(I.87)

Уравнение вант гоффа энергия гиббса(I.88)

Здесь μ°i – стандартный химический потенциал компонента (Pi = 1 атм., Сi = 1 моль/л.). Очевидно, что изменение свободной энергии системы можно связать с изменением состава системы следующим образом:

Уравнение вант гоффа энергия гиббса(I.89)

Уравнение вант гоффа энергия гиббса(I.90)

Поскольку условием равновесия является минимум свободной энергии системы (dG = 0, dF = 0), можно записать:

Уравнение вант гоффа энергия гиббса(I.91)

В закрытой системе изменение числа молей одного компонента сопровождается эквивалентным изменением числа молей остальных компонентов; т.е., для приведенной выше химической реакции имеет место соотношение:

Уравнение вант гоффа энергия гиббса(I.92)

Отсюда можно получить следующее условие химического равновесия в закрытой системе:

Уравнение вант гоффа энергия гиббса(I.93)

В общем виде условие химического равновесия можно записать следующим образом:

Уравнение вант гоффа энергия гиббса(I.94)

Выражение (I.94) носит название уравнения Гиббса – Дюгема. Подставив в него зависимость химического потенциала от концентрации, получаем:

Уравнение вант гоффа энергия гиббса(I.95)

Уравнение вант гоффа энергия гиббса(I.96)

Для изобарно-изотермического процесса аналогичным образом можно получить:

Уравнение вант гоффа энергия гиббса(I.97)

Полученные нами выражения I.96 – I.97 есть изотерма химической реакции . Если система находится в состоянии химического равновесия, то изменение термодинамического потенциала равно нулю; получаем:

Уравнение вант гоффа энергия гиббса(I.98)

Уравнение вант гоффа энергия гиббса(I.99)

Здесь сi и рiравновесные концентрации и парциальные давления исходных веществ и продуктов реакции (в отличие от неравновесных Сi и Рi в уравнениях I.96 – I.97).

Поскольку для каждой химической реакции стандартное изменение термодинамического потенциала ΔF° и ΔG° есть строго определенная величина, то произведение равновесных парциальных давлений (концентраций), возведенных в степень, равную стехиометрическому коэффициенту при данном веществе в уравнении химической реакции (стехиометрические коэффициенты при исходных веществах принято считать отрицательными) есть некоторая константа, называемая константой равновесия. Уравнения (I.98, I.99) показывают связь константы равновесия со стандартным изменением свободной энергии в ходе реакции. Уравнение изотермы химической реакции связывает величины реальных концентраций (давлений) реагентов в системе, стандартного изменения термодинамического потенциала в ходе реакции и изменения термодинамического потенциала при переходе из данного состояния системы в равновесное. Знак ΔG (ΔF) определяет возможность самопроизвольного протекания процесса в системе. При этом ΔG° (ΔF°) равно изменению свободной энергии системы при переходе из стандартного состояния (Pi = 1 атм., Сi = 1 моль/л) в равновесное. Уравнение изотермы химической реакции позволяет рассчитать величину ΔG (ΔF) при переходе из любого состояния системы в равновесное, т.е. ответить на вопрос, будет ли химическая реакция протекать самопроизвольно при данных концентрациях Сi (давлениях Рi) реагентов:

Уравнение вант гоффа энергия гиббса(I.100)

Уравнение вант гоффа энергия гиббса(I.101)

Если изменение термодинамического потенциала меньше нуля, процесс в данных условиях будет протекать самопроизвольно.

1.7.1 Влияние внешних условий на химическое равновесие

При постоянстве внешних условий система может находиться в состоянии равновесия сколь угодно долго. Если изменить эти условия (т.е. оказать на систему какое-либо внешнее воздействие), равновесие нарушается; в системе возникает самопроизвольный процесс, который продолжается до тех пор, пока система опять не достигнет состояния равновесия (уже при новых условиях). Рассмотрим, как влияют на положение равновесия некоторые факторы.

1.7.2 Влияние давления и концентрации

Рассмотрим несколько возможных случаев смещения равновесия.

1. В систему добавлено исходное вещество. В этом случае

Уравнение вант гоффа энергия гиббса; Уравнение вант гоффа энергия гиббса;

По уравнению изотермы химической реакции (I.100 – I.101) получаем: ΔF 0; ΔG > 0. Химическое равновесие будет смещено влево (в сторону расходования продуктов реакции и образования исходных веществ).

3. Изменено общее давление (для реакций в газовой фазе).

Парциальные давления всех компонентов Рi в этом случае изменяются в одинаковой степени; направление смещения равновесия будет определяться суммой стехиометрических коэффициентов Δn.

Учитывая, что парциальное давление газа в смеси равно общему давлению, умноженному на мольную долю компонента в смеси (Рi = РХi), изотерму реакции можно переписать в следующем виде (здесь Δn = Σ(ni) продΣ(ni) исх):

Уравнение вант гоффа энергия гиббса(I.102)

Уравнение вант гоффа энергия гиббса (I.103)

Примем, что Р2 > Р1. В этом случае, если Δn > 0 (реакция идет с увеличением числа молей газообразных веществ), то ΔG > 0; равновесие смещается влево. Если реакция идет с уменьшением числа молей газообразных веществ (Δn изобару Вант-Гоффа :

Уравнение вант гоффа энергия гиббса(I.06)

Рассуждая аналогичным образом, для процесса, проходящего в изохорных условиях, можно получить изохору Вант-Гоффа :

Уравнение вант гоффа энергия гиббса(I.107)

Изобара и изохора Вант-Гоффа связывают изменение константы химического равновесия с тепловым эффектом реакции в изобарных и изохорных условиях соответственно. Очевидно, что чем больше по абсолютной величине тепловой эффект химической реакции, тем сильнее влияет температура на величину константы равновесия. Если реакция не сопровождается тепловым эффектом, то константа равновесия не зависит от температуры.

Экзотермические реакции: ΔH° 0 (ΔU° > 0). В этом случае температурный коэффициент логарифма константы равновесия положителен; повышение температуры увеличивает величину константы равновесия (смещает равновесие вправо).

Графики зависимостей константы равновесия от температуры для экзотермических и эндотермических реакций приведены на рис. I.4.

Уравнение вант гоффа энергия гиббса

Рис. 1.4 Зависимость константы равновесия от температуры.

Действие рассмотренных нами факторов (давления, концентрации и температуры), равно как и любых других, на систему, находящуюся в состоянии равновесия, обобщает принцип смещения равновесия , называемый также принципом Ле Шателье – Брауна :

Если на систему, находящуюся в состоянии истинного равновесия, оказывается внешнее воздействие, то в системе возникает самопроизвольный процесс, компенсирующий данное воздействие.

Принцип Ле Шателье – Брауна является одним из следствий второго начала термодинамики и применим к любым макроскопическим системам, находящимся в состоянии истинного равновесия.


Copyright © С. И. Левченков, 1996 — 2005.

Видео:Химическое равновесие. Закон действующих масс.Скачать

Химическое равновесие. Закон действующих масс.

ВАНТ-ГОФФА ПРАВИЛО

ВАНТ-ГОФФА ПРАВИЛО. Почти все химические реакции при повышении температуры идут быстрее. Зависимость скорости реакции от температуры описывается уравнением Аррениуса:

Уравнение вант гоффа энергия гиббса

k = Ae –E a/RT, где k константа скорости реакции, А не зависящая от температуры константа (ее называют предэкспоненциальным множителем), Еа энергия активации, R газовая постоянная, Т абсолютная температура. В школьных учебниках зависимость скорости реакции от температуры определяют в соответствии с так называемым «правилом Вант-Гоффа», которое в 19 в. сформулировал голландский химик Якоб Вант-Гофф. Это чисто эмпирическое правило, т.е. правило, основанное не на теории, а выведенное из опытных данных. В соответствии с этим правилом, повышение температуры на 10° приводит к увеличению скорости в 24 раза. Математически эту зависимость можно выразить уравнением v2v1 = g (T2 T 1 )/10 , где v1 и v2 скорости реакции при температурах Т1 и Т2; величина g называется температурным коэффициентом реакции. Например, если g = 2, то при Т2 Т1 = 50 о v2/v1 = 2 5 = 32, т.е. реакция ускорилась в 32 раза, причем это ускорение никак не зависит от абсолютных величин Т1 и Т2, а только от их разности.

Однако из уравнения Аррениуса следует, что температурный коэффициент реакции зависит как от энергии активации, так и от абсолютной температуры. Для данной реакции с определенным значением Еа ускорение при повышении температуры на 10° будет тем больше, чем ниже температура. Это почти очевидно и без расчетов: повышение температуры от 0 до 10° С должно сказаться на скорости реакции значительно сильнее, чем такое же повышение температуры, например, от 500 до 510° С.

С другой стороны, для данного температурного интервала ускорение реакции будет тем сильнее, чем больше ее энергия активации. Так, если энергия активации реакции мала, то такая реакция идет очень быстро, и при повышении температуры на 10° С ее скорость почти не изменяется. Для таких реакций температурный коэффициент намного меньше 2. Для реакций же с большой энергией активации, которые при невысоких температурах идут медленно, ускорение при повышении температуры на 10° С может значительно превысить 4-кратное.

Например, реакция диоксида углерода со щелочным раствором с образованием гидрокарбонат-иона (СО2 + ОН® НСО3 – ) имеет энергию активации 38,2 кДж/моль, поэтому при повышении температуры, например, от 50 до 60° С эта реакция ускорится всего в 1,5 раза. В то же время реакция распада этилбромида на этилен и бромоводород (С2Н5Вr ® С2Н4 + НВr) с энергией активации 218 кДж/моль ускорится при повышении температуры от 100 до 110 o С в 6,3 раза (правда, в этом интервале температур реакция идет очень медленно). Кинетика реакции атомов водорода с этаном H + C2H6 ® H2 + C2H5 была изучены в широком температурном интервале – от 300 до 1100 К (27–827° С). Для этой реакции Eа = 40,6 кДж/моль. Следовательно, повышение температуры на 10° вызовет увеличение скорости реакции в 1,7 раза в интервале 300–310 K и только в 1,04 раза в интервале 1090–1100 K. Так что при высоких температурах скорость этой реакции практически не зависит от температуры. А для реакции присоединения атома водорода к двойной связи H + C2H4 ® C2H5 энергия активации мала (Eа = 3,4 кДж/моль, так что ее скорость слабо зависит от температуры в широком температурном интервале. И только при температурах намного ниже 0° С начинает сказываться наличие активационного барьера.

Подобных примеров можно привести множество. Очевидно, что правило Вант-Гоффа противоречит не только уравнению Аррениуса, но и многим экспериментальным данным. Откуда же оно взялось и почему нередко выполняется?

Если в приведенном выше математическом выражении для правила Вант-Гоффа подставить вместо скоростей v1 и v2 для данной реакции их зависимости от температуры, в соответствии с уравнением Аррениуса, то после сокращения предэкспоненциальных множителей получим следующее выражение: g = vT +10/vT = е –Е а/R(Т+10)/е –Е а/ = е (Еа/R)[1/Т 1/(T+10)] . Логарифмироване этого уравнения дает: lng = (Eа/R)[1/T 1/(T + 10)], откуда Еа = Rlng T(T + 10)/10 = 0,83lngT(T + 10). Энергия активации не является функцией температуры, эта зависимость нужна лишь для удобства последующего анализа. Последнее уравнение это уравнение параболы, в котором физический смысл имеют только положительные значения. Соответствующая диаграмма ограничена двумя ветвями параболы: при g = 2 получаем Еа = 0,58Т(Т + 10), при g = 4 получаем Еа = 1,16Т(Т + 10). К тем же формулам приходим и при использовании десятичных логарифмов. Соответствующие графики двух парабол, для значений g 2 и 4, приведены на рисунке. Их физический смысл заключается в том, что области выполнения правила Вант-Гоффа соответствует только область между параболами. Таким образом, существуют только определенные соотношения между энергией активации реакции и температурой ее проведения, при которых правило Вант-Гоффа выполняется. Ниже нижней ветви температурный коэффициент g 4.

Уравнение вант гоффа энергия гиббса

Если посмотреть, какие реакции «укладываются» в указанную довольно узкую область, то окажется, что все эти реакции идут не слишком быстро и не слишком медленно, а с удобной для измерения (при данной температуре) скоростью. Скорость только таких реакций и могли изучать химики во времена Вант-Гоффа. Например, если энергия активации была невелика (меньше 50 кДж/моль), то такая реакция при комнатной температуре заканчивалась за 12 секунды; поэтому для изучения ее кинетики следовало значительно понизить температуру, чтобы реакция проходила не быстрее, чем за 1020 минут. Только в этом случае химики 19 в. успевали отбирать пробы по ходу реакции и анализировать изменение в них концентрации реагентов. Других способов изучения скорости реакции в то время не было. Если это не удавалось (например, водный раствор замерзал), то скорость такой реакции не изучали. Если же энергия активации реакции была велика и при комнатной температуре она шла слишком медленно (многие сутки, или даже недели), то температуру повышали, чтобы реакция шла с удобной для измерения скоростью. И здесь были свои ограничения – например, раствор мог закипеть, т.е. в любом случае исследователи фактически «подстраивали» изучаемую реакцию под область между двумя параболами.

Сейчас химики имеют возможность с помощью различных приборов экспериментально изучать и очень быстрые (идущие в микросекундной области), и очень медленные реакции, для которых температурный коэффициент может быть значительно меньше 2 или значительно больше 4. Поэтому правило Вант-Гоффа, которое, в отличие от уравнения Аррениуса, не имеет четкого физического смысла, представляет лишь чисто исторический интерес и в современной науке не используется. В подавляющем большинстве учебников и монографий по химической кинетике, а также в 5-томной Химической Энциклопедии это правило даже не упоминается. И, тем не менее, если изучаемая реакция идет с удобной для измерения скоростью, например, заканчивается за 3040 мин, а энергия активации ее еще не измерена, то для предварительной грубой оценки зависимости скорости такой реакции от температуры можно использовать правило Вант-Гоффа. Поэтому это правило приводится во всех школьных учебниках химии.

📹 Видео

Свободная энергия Гиббса. 10 класс.Скачать

Свободная энергия Гиббса. 10 класс.

Влияние температуры на скорость химических реакций. 10 класс.Скачать

Влияние температуры на скорость химических реакций. 10 класс.

Решение задач на вычисление энергии Гиббса. 1 часть. 10 класс.Скачать

Решение задач на вычисление энергии Гиббса. 1 часть. 10 класс.

Уравнение Вант-ГоффаСкачать

Уравнение Вант-Гоффа

Решение задач на тему: "Правило Вант-Гоффа". 2 часть. 10 класс.Скачать

Решение задач на тему: "Правило Вант-Гоффа". 2 часть. 10 класс.

Энергия ГиббсаСкачать

Энергия Гиббса

Закон Вант-ГОФФАСкачать

Закон Вант-ГОФФА

Химия | Тепловой эффект химической реакции (энтальпия)Скачать

Химия | Тепловой эффект химической реакции (энтальпия)

Свободная энергия Гиббса и самопроизвольные реакции (видео 8) | Энергия| БиологияСкачать

Свободная энергия Гиббса и самопроизвольные реакции (видео 8) | Энергия| Биология

Правило Вант-Гоффа для ЕНТ по химии 2023 | Химия ЕНТ УмскулСкачать

Правило Вант-Гоффа для ЕНТ по химии 2023 | Химия ЕНТ Умскул

Энергия Гиббса. Практическая часть. 10 класс.Скачать

Энергия Гиббса. Практическая часть. 10 класс.

Вывод уравнения Вант-Гоффа для осмотического давленияСкачать

Вывод уравнения Вант-Гоффа для осмотического давления

Задачи на правило Вант-Гоффа. Зависимость скорости реакции от температуры.Скачать

Задачи на правило Вант-Гоффа. Зависимость скорости реакции от температуры.

Задача на правило Вант Гоффа. По условию Vt2 = Vt1+72Скачать

Задача на правило Вант Гоффа. По условию Vt2 = Vt1+72

2 4 Свободная энергия ГиббсаСкачать

2 4  Свободная энергия Гиббса

Коробов М. В. - Физическая химия. Часть 1 - Энергия Гиббса образования раствора. Уравнение ШредераСкачать

Коробов М. В. - Физическая химия. Часть 1 - Энергия Гиббса образования раствора. Уравнение Шредера

Использование правила Вант-Гоффа для решения зада. Химия для поступающих.Скачать

Использование правила Вант-Гоффа для решения зада. Химия для поступающих.

Тепловой эффект хим. реакции. Энтальпия. Закон Гесса. Капучинка ^-^Скачать

Тепловой эффект хим. реакции. Энтальпия. Закон Гесса. Капучинка ^-^
Поделиться или сохранить к себе: