Уравнение в натуральных числах с двумя неизвестными

math4school.ru

Уравнение в натуральных числах с двумя неизвестными

Уравнение в натуральных числах с двумя неизвестными

Уравнение в натуральных числах с двумя неизвестными

Уравнение в натуральных числах с двумя неизвестными

Уравнение в натуральных числах с двумя неизвестными

Уравнение в натуральных числах с двумя неизвестными

Уравнение в натуральных числах с двумя неизвестными

Уравнение в натуральных числах с двумя неизвестными

Содержание
  1. Уравнения в целых числах
  2. Немного теории
  3. Задачи с решениями
  4. Задачи без решений
  5. Уравнения с двумя переменными (неопределенные уравнения)
  6. Урок 1.
  7. Ход урока.
  8. 1) Орг. момент.
  9. 2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида mx + ny = k, где m, n, k – числа, x, y – переменные. Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство. Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными. 1. 5x+2y=12 (2)y = -2.5x+6 Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y. Пусть x = 2, y = -2.5•2+6 = 1 x = 4, y = -2.5•4+6 =- 4 Пары чисел (2;1); (4;-4) – решения уравнения (1). Данное уравнение имеет бесконечно много решений. 3) Историческая справка Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной. В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику. Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени. 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  10. 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  11. Видео
Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”. Решение уравнений с двумя неизвестными В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение. Определение Итак, уравнением с двумя неизвестными называют любое равенство следующего типа: a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные. Ниже приведены несколько примеров: Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными. Решение задач Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора. Для наглядности объяснений подберем корни для выражения: y-x = 6. При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5). Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y. У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9 Приведем исходное равенство к следующему виду: В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней. При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному. Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть. Оба равенства равносильны. Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны. Оба уравнения также равносильны. Система уравнений с двумя неизвестными Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными. Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие. Решить подобные системы уравнений можно, применяя следующие методы. Метод подстановки Выражаем неизвестное из любого равенства через вторую переменную. Подставляем получившееся выражение неизвестного во второе равенство и решаем его. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного. Метод сложения Приводим к равенству модули чисел при каком-либо неизвестном. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную. Графический метод Выражаем в каждом равенстве одну переменную через другую. Строим графики двух имеющихся уравнений в одной координатной плоскости. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений. Делаем проверку, подставив полученные значения в исходную систему равенств. При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно. В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов. Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин! Видео Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

  • 3) Историческая справка
  • 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  • 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки? Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”. Решение уравнений с двумя неизвестными В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение. Определение Итак, уравнением с двумя неизвестными называют любое равенство следующего типа: a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные. Ниже приведены несколько примеров: Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными. Решение задач Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора. Для наглядности объяснений подберем корни для выражения: y-x = 6. При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5). Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y. У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9 Приведем исходное равенство к следующему виду: В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней. При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному. Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть. Оба равенства равносильны. Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны. Оба уравнения также равносильны. Система уравнений с двумя неизвестными Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными. Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие. Решить подобные системы уравнений можно, применяя следующие методы. Метод подстановки Выражаем неизвестное из любого равенства через вторую переменную. Подставляем получившееся выражение неизвестного во второе равенство и решаем его. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного. Метод сложения Приводим к равенству модули чисел при каком-либо неизвестном. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную. Графический метод Выражаем в каждом равенстве одну переменную через другую. Строим графики двух имеющихся уравнений в одной координатной плоскости. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений. Делаем проверку, подставив полученные значения в исходную систему равенств. При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно. В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов. Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин! Видео Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

  • Урок 2.
  • 1) Организационный момент
  • 2) Проверка домашнего задания
  • 3) Изучение нового материала
  • 4) Домашнее задание.
  • Решение уравнений с двумя неизвестными
  • Определение
  • Решение задач
  • Система уравнений с двумя неизвестными
  • Метод подстановки
  • Метод сложения
  • Графический метод
  • Видео
  • Видео:Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

    Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

    Уравнения в целых числах

    Уравнение в натуральных числах с двумя неизвестными

    Немного теории

    Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

    Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

    не имеет ненулевых рациональных решений для всех натуральных n > 2.

    Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

    В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

    При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

    способ перебора вариантов;

    применение алгоритма Евклида;

    представление чисел в виде непрерывных (цепных) дробей;

    разложения на множители;

    решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

    метод бесконечного спуска.

    Задачи с решениями

    1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.

    Запишем уравнение в виде (x – 2y)(x + y) = 7.

    Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

    1) x – 2y = 7, x + y = 1;

    2) x – 2y = 1, x + y = 7;

    3) x – 2y = –7, x + y = –1;

    4) x – 2y = –1, x + y = –7.

    Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

    Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

    2. Решить в целых числах уравнение:

    а) 20х + 12у = 2013;

    в) 201х – 1999у = 12.

    а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

    Ответ: решений нет.

    б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

    Поскольку числа 5 и 7 взаимно простые, то

    Значит, общее решение:

    х = 1 + 7k, у = 2 – 5k,

    где k – произвольное целое число.

    Ответ: (1+7k; 2–5k), где k – целое число.

    в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

    НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

    Запишем этот процесс в обратном порядке:

    1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

    = 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

    = 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

    Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

    x0 = 1273·12 = 15276, y0 = 128·12 = 1536

    является решением уравнения 201х – 1999у = 12.

    Общее решение этого уравнения запишется в виде

    х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

    или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

    х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

    Ответ: (1283+1999n, 129+201n), где n – целое число.

    3. Решить в целых числах уравнение:

    а) x 3 + y 3 = 3333333;

    б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).

    а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

    Ответ: целочисленных решений нет.

    б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

    Ответ: целочисленных решений нет.

    а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;

    б) в целых числах уравнение x + y = x 2 – xy + y 2 .

    а) Решим данное уравнение как квадратное относительно переменной у. Получим

    у = х + 9 или у = 16 – х.

    Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

    Так как х, у – простые, то из равенства у = 16 – х имеем

    С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

    Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

    б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

    x 2 – (y + 1)x + y 2 – y = 0.

    Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

    Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

    5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?

    Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

    Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:

    y = xn = n(2n 2 +1) = 2n 3 +n.

    Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).

    6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.

    Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

    Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

    Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

    Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

    и исходное уравнение примет вид

    Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x1 2 + y1 2 + z1 2 + u1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x1 2 + y1 2 + z1 2 + u1 2 не делится даже на 4. Значит,

    и мы получаем уравнение

    Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

    7. Докажите, что уравнение

    (х – у) 3 + (y – z) 3 + (z – x) 3 = 30

    не имеет решений в целых числах.

    Воспользуемся следующим тождеством:

    (х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).

    Тогда исходное уравнение можно записать в виде

    (х – у)(y – z)(z – x) = 10.

    Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

    Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

    8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .

    если х = 1, то у 2 = 1,

    если х = 3, то у 2 = 9.

    Этим случаям соответствуют следующие пары чисел:

    Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

    5! + 6! + . . . + х! = 10n,

    можем записать, что

    1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

    Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

    Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

    9. Решите следующую систему уравнений в натуральных числах:

    a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).

    3abc > 0, то a 3 > b 3 + c 3 ;

    таким образом имеем

    b 2 2 + х = у 4 + у 3 + у 2 + у.

    Разложив на множители обе части данного уравнения, получим:

    х(х + 1) = у(у + 1)(у 2 + 1),

    х(х + 1) = (у 2 + у)(у 2 + 1)

    Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

    Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

    Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

    Задачи без решений

    1. Решить в целых числах уравнение:

    б) х 2 + у 2 = х + у + 2.

    2. Решить в целых числах уравнение:

    а) х 3 + 21у 2 + 5 = 0;

    б) 15х 2 – 7у 2 = 9.

    3. Решить в натуральных числах уравнение:

    4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение

    5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.

    Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

    Линейное уравнение с двумя переменными. 7 класс.

    Уравнения с двумя переменными (неопределенные уравнения)

    Разделы: Математика

    Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

    Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

    В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

    Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

    Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

    Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

    Цель урока:

      повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
    • воспитание познавательного интереса к учебному предмету
    • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

    Урок 1.

    Ход урока.

    1) Орг. момент.

    2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида

    mx + ny = k, где m, n, k – числа, x, y – переменные.

    Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

    Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

    1. 5x+2y=12 Уравнение в натуральных числах с двумя неизвестными(2)y = -2.5x+6

    Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

    Пусть x = 2, y = -2.5•2+6 = 1

    x = 4, y = -2.5•4+6 =- 4

    Пары чисел (2;1); (4;-4) – решения уравнения (1).

    Данное уравнение имеет бесконечно много решений.

    3) Историческая справка

    Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

    В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

    Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

    4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Уравнение в натуральных числах с двумя неизвестнымиZ kУравнение в натуральных числах с двумя неизвестными0

    Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

    Пример: 34x – 17y = 3.

    НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

    Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

    Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

    Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

    Уравнение в натуральных числах с двумя неизвестнымигде (Уравнение в натуральных числах с двумя неизвестными; Уравнение в натуральных числах с двумя неизвестными) – какое-либо решение уравнения (1), t Уравнение в натуральных числах с двумя неизвестнымиZ

    Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

    m, n, x, y Уравнение в натуральных числах с двумя неизвестнымиZ

    Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид Уравнение в натуральных числах с двумя неизвестными

    5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Уравнение в натуральных числах с двумя неизвестнымиZ, а девочек у, y Уравнение в натуральных числах с двумя неизвестнымиZ, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Уравнение в натуральных числах с двумя неизвестнымиZ, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: Уравнение в натуральных числах с двумя неизвестнымигде m Уравнение в натуральных числах с двумя неизвестнымиZ.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: Уравнение в натуральных числах с двумя неизвестными, где n Уравнение в натуральных числах с двумя неизвестнымиZ.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    Уравнение в натуральных числах с двумя неизвестными

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) Уравнение в натуральных числах с двумя неизвестными=> Уравнение в натуральных числах с двумя неизвестными

    б) Уравнение в натуральных числах с двумя неизвестными=> Уравнение в натуральных числах с двумя неизвестными

    в) Уравнение в натуральных числах с двумя неизвестными=> Уравнение в натуральных числах с двумя неизвестными

    г) Уравнение в натуральных числах с двумя неизвестными=> Уравнение в натуральных числах с двумя неизвестными

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а) Уравнение в натуральных числах с двумя неизвестными

    Уравнение в натуральных числах с двумя неизвестнымиУравнение в натуральных числах с двумя неизвестнымиУравнение в натуральных числах с двумя неизвестными
    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    Уравнение в натуральных числах с двумя неизвестнымиУравнение в натуральных числах с двумя неизвестнымиУравнение в натуральных числах с двумя неизвестными
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б) Уравнение в натуральных числах с двумя неизвестными

    в) Уравнение в натуральных числах с двумя неизвестными

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Уравнение в натуральных числах с двумя неизвестнымиZ
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Уравнение в натуральных числах с двумя неизвестнымиZ
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Уравнение в натуральных числах с двумя неизвестнымиZ
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Уравнение в натуральных числах с двумя неизвестнымиZ
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Уравнение в натуральных числах с двумя неизвестнымиZ
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Уравнение в натуральных числах с двумя неизвестнымиZ
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Уравнение в натуральных числах с двумя неизвестнымиZ
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Уравнение в натуральных числах с двумя неизвестнымиZ

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) Уравнение в натуральных числах с двумя неизвестными(1;2), (5;2), (-1;-1), (-5;-2)

    Уравнение в натуральных числах с двумя неизвестными

    Число 3 можно разложить на множители:

    a) Уравнение в натуральных числах с двумя неизвестнымиб) Уравнение в натуральных числах с двумя неизвестнымив) Уравнение в натуральных числах с двумя неизвестнымиг) Уравнение в натуральных числах с двумя неизвестными
    в) Уравнение в натуральных числах с двумя неизвестными(11;12), (-11;-12), (-11;12), (11;-12)
    г) Уравнение в натуральных числах с двумя неизвестными(24;23), (24;-23), (-24;-23), (-24;23)
    д) Уравнение в натуральных числах с двумя неизвестными(48;0), (24;1), (24;-1)
    е) Уравнение в натуральных числах с двумя неизвестнымиx = 3m; y = 2m, mУравнение в натуральных числах с двумя неизвестнымиZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Уравнение в натуральных числах с двумя неизвестнымиZ
    з) Уравнение в натуральных числах с двумя неизвестнымиx = 2m; y = m; x = 2m; y = -m, m Уравнение в натуральных числах с двумя неизвестнымиZ
    и)Уравнение в натуральных числах с двумя неизвестнымирешений нет

    4) Решить уравнения в целых числах

    Уравнение в натуральных числах с двумя неизвестными(-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    Уравнение в натуральных числах с двумя неизвестными(-4;-1), (-2;1), (2;-1), (4;1)
    Уравнение в натуральных числах с двумя неизвестными(-11;-12), (-11;12), (11;-12), (11;12)
    Уравнение в натуральных числах с двумя неизвестными(-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) Уравнение в натуральных числах с двумя неизвестными(-1;0)
    б)Уравнение в натуральных числах с двумя неизвестными(5;0)
    в) Уравнение в натуральных числах с двумя неизвестными(2;-1)
    г) Уравнение в натуральных числах с двумя неизвестными(2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Видео:Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

    Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»

    Решение уравнений с двумя неизвестными

    В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

    Видео:Уравнение с двумя неизвестными. Решить в целых числах. ЗадачаСкачать

    Уравнение с двумя неизвестными. Решить в целых числах. Задача

    Определение

    Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

    a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

    Ниже приведены несколько примеров:

    Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

    Видео:Как решать уравнения с двумя переменными в целых числах! Лёгкий способ!Скачать

    Как решать уравнения с двумя переменными в целых числах! Лёгкий способ!

    Решение задач

    Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

    Для наглядности объяснений подберем корни для выражения: y-x = 6.

    При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

    Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

    У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

    Приведем исходное равенство к следующему виду:

    В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

    При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

    Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

    Оба равенства равносильны.

    Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

    Оба уравнения также равносильны.

    Уравнение в натуральных числах с двумя неизвестными

    Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

    ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

    Система уравнений с двумя неизвестными

    Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

    Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

    Решить подобные системы уравнений можно, применяя следующие методы.

    Метод подстановки

    1. Выражаем неизвестное из любого равенства через вторую переменную.
    2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
    3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

    Метод сложения

    1. Приводим к равенству модули чисел при каком-либо неизвестном.
    2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
    3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

    Графический метод

    1. Выражаем в каждом равенстве одну переменную через другую.
    2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
    3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
    4. Делаем проверку, подставив полученные значения в исходную систему равенств.

    При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

    В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

    Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

    Видео:Решение уравнений в целых числахСкачать

    Решение уравнений в целых числах

    Видео

    Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

    💡 Видео

    Классический способ решения Диофантовых уравнений ➜ Решите уравнение в целых числах ➜ 13x-7y=6Скачать

    Классический способ решения Диофантовых уравнений ➜ Решите уравнение в целых числах ➜ 13x-7y=6

    Линейное уравнение с двумя переменными.Скачать

    Линейное уравнение с двумя переменными.

    7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать

    7 класс, 8 урок, Линейное уравнение с двумя переменными и его график

    Как решить уравнение в целых числах с двумя неизвестными Подготовка к олимпиаде по математикеСкачать

    Как решить уравнение в целых числах с двумя неизвестными Подготовка к олимпиаде по математике

    Решить уравнение в натуральных числах. Олимпиадная задачаСкачать

    Решить уравнение в натуральных числах. Олимпиадная задача

    Уравнение в натуральных числах. Задача для любителей диофантовых уравнений и олимпиадСкачать

    Уравнение в натуральных числах. Задача для любителей диофантовых уравнений и олимпиад

    УРАВНЕНИЕ В НАТУРАЛЬНЫХ! УСТНОЕ РЕШЕНИЕ 5-КЛАССНИКА!Скачать

    УРАВНЕНИЕ В НАТУРАЛЬНЫХ! УСТНОЕ РЕШЕНИЕ 5-КЛАССНИКА!

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

    Решение линейных уравнений с двумя переменными в целых числах | Алгебра 7 класс #44 | ИнфоурокСкачать

    Решение линейных уравнений с двумя переменными в целых числах | Алгебра 7 класс #44 | Инфоурок

    ПЕРЕЧНЕВЫЕ ОЛИМПИАДЫ. Диофантовы уравненияСкачать

    ПЕРЕЧНЕВЫЕ ОЛИМПИАДЫ. Диофантовы уравнения

    Решите уравнение в целых числах 3x^2+5y^2=345 ✱ Диофантовы уравнения ✱ Как решать?Скачать

    Решите уравнение в целых числах 3x^2+5y^2=345 ✱ Диофантовы уравнения ✱ Как решать?

    Решите уравнение с двумя неизвестнымиСкачать

    Решите уравнение с двумя неизвестными

    Алгебра 10 класс (Урок№9 - Решение уравнений в целых числах.)Скачать

    Алгебра 10 класс (Урок№9 - Решение уравнений в целых числах.)
    Поделиться или сохранить к себе: