Если через каждую точку кривой L провести прямую, параллельно данному вектору а, то получим поверхность, которая называется цилиндрической поверхностью. Прямые, параллельные вектору а и принадлежащие цилиндрической поверхности, называются образующими этой поверхности, а кривая L называется направляющей цилиндрической поверхности (рис. 225).
Если в сечении цилиндрической поверхности плоскостью, перпендикулярной к ее образующим, (в нормальном сечении) получается окружность, то цилиндрическая поверхность называется круговой. Если в сечении получается эллипс, то цилиндрическую поверхность называют эллиптической, если гипербола — гиперболической, если парабола — параболической.
Пусть в пространстве дана прямоугольная система координат Oxyz, и пусть в плоскости хОу дана кривая L, уравнение которой в этой плоскости имеет вид
Составим уравнение цилиндрической поверхности с образующими, параллельными вектору a = (α; β; γ), γ =/= 0, если за направляющую принята кривая L (рис.226).
Рассмотрим произвольную точку этой поверхности М(х; у; z). Образующая l, проходящая через точку М, пересечет плоскость хОу в точке N, лежащей на кривой L. Если координаты точки N в пространстве обозначить (х1; у1; 0), то вектор (overrightarrow) имеет координаты
По определению цилиндрической поверхности векторы а и (overrightarrow) коллинеарны, т. е.
следовательно, имеем систему уравнений
Решив эту систему уравнений относительно λ, x1и у1, получим
Так как точка N лежит на кривой L, то F(х1; у1) = 0. Заменив х1 и у1 по формулам (2), получим уравнение
которое, очевидно, и будет уравнением данной цилиндрической поверхности.
Задача 1. Составить уравнение цилиндрической поверхности, у которой направляющая лежит в плоскости хОу и имеет уравнение х 2 + у 2 = 4, а образующие параллельны вектору а = (0; 1; 1).
Так как, согласно условию задачи F(x; у) = х 2 + у 2 — 4 и α = 0, β = 1, γ = 1, то в силу формулы (3) уравнение данной цилиндрической поверхности имеет вид
Эта поверхность изображена на рис. 227.
Аналогично можно показать, что если направляющая цилиндрической поверхности L лежит в плоскости xOz и определяется уравнением F(x; z) = 0, а вектор а не параллелен этой плоскости, то цилиндрическая поверхность имеет уравнение
Наконец, если L определяется уравнением F(у; z) = 0 и а не параллелен плоскости yOz, то уравнение цилиндрической поверхности имеет вид
Отметим, что если направляющая цилиндрической поверхности лежит в плоскости
хОу, а образующие параллельны оси Oz, то уравнение цилиндрической поверхности в пространстве совпадает с уравнением направляющей и имеет вид
Уравнение (4), как уравнение множества точек плоскости, определяет кривую L, в то же самое время уравнение (4), как уравнение множества точек пространства, определяет цилиндрическую поверхность.
Итак, каждое из уравнений
можно истолковать двояко: если это уравнение множества точек плоскости, то это уравнение линии L, лежащей в плоскости своих переменных; если же это уравнение множества точек пространства, то каждое из этих уравнений определяет цилиндрическую поверхность с направляющей L и образующими, параллельными оси oтсутствующей переменной.
Рассмотрим несколько примеров.
на плоскости хОу определяет окружность с центром в начале координат и радиусом r (рис. 228, а).
Это жe уравнение в пространстве определяет круговую цилиндрическую поверхность, направляющей которой является окружность, лежащая в плоскости хОу, а образующие параллельны оси Oz (рис. 228, б).
на плоскости xOz определяет окружность с центром в начале координат и радиусом
Это же уравнение в пространстве определяет круговую цилиндрическую поверхность, направляющей которой является окружность, лежащая в плоскости xOz, а образующие параллельны оси Оу (рис. 229, б).
и на плоскости, и в пространстве определяет пустое множество, так как сумма неотрицательных чисел не может быть числом отрицательным.
на плоскости хОу определяет эллипс с центром в начале координат и полуосями а и b (рис. 230, а).
Это же уравнение в пространстве определяет эллиптическую цилиндрическую поверхность с направляющей в плоскости хОу и образующими, параллельными оси Oz (рис. 230, б).
на плоскости хОу определяет гиперболу с центром в начале координат и полуосями а и b (рис. 231, а).
В пространстве это уравнение определяет гиперболическую цилиндрическую поверхность с образующими, параллельными оси Oz (рис. 231, б).
на плоскости хОу определяет параболу (рис. 232, а), а в пространстве — параболическую цилиндрическую поверхность с образующими, параллельными оси Oz (рис. 232, б).
Задача 2. Определить вид поверхности 3x 2 + 6y 2 — 24 = 0.
Данное уравнение приведем к виду:
Это уравнение в пространстве определяет эллиптическую цилиндрическую поверхность с направляющей в плоскости хОу и образующими, параллельными оси Oz.
Видео:§63 Цилиндрические поверхностиСкачать
Цилиндрические поверхности с образующими, параллельными координатной оси
Дата добавления: 2015-08-14 ; просмотров: 1999 ; Нарушение авторских прав
Определение 8.1.1. Цилиндрической поверхностью называется множество параллельных прямых, пересекающих данную линию.
Эта линия называется направляющей, а параллельные прямые — образующими цилиндрической поверхности.
Будем рассматривать в дальнейшем только такие цилиндрические поверхности, направляющие которых лежат в одной из координатных плоскостей, а образующие параллельны координатной оси, перпендикулярной этой области.
Рассмотрим цилиндрическую поверхность с образующими, параллельными оси Oz, и направляющей l, лежащей в плоскости Oxy.
Направляющая l задается, очевидно, на плоскости уравнением: F(x,y) = 0, в пространстве системой уравнений:
(8.1.)
(Уравнение (8.1.) задают эту линию как пересечение цилиндрической поверхности и координатной плоскости XOY).
Докажем теперь, что цилиндрическая поверхность имеет уравнение F(x,y) = 0 (8.2.)
Д-но, пусть M(x,y,z) — произвольная точка поверхности, тогда проекция точки М на плоскость XOY — точка М` — имеет координаты (x,y,0) и лежит на направляющей l. Поэтому координаты т. М удовлетворяют уравнению (2) (т.к. оно не содержит z).
Далее, если N(x`,y`,0) S (поверхности), то её проекция на плоскость — точка N`(x`,y`,0) — не принадлежит l и, следовательно F(x,y) 0.
Следовательно, уравнение F(x,y) = 0, не содержащее z, определяет в пространстве цилиндрическую поверхность с образующими, параллельными оси Oz и направляющей, которая в плоскости Oxy имеет то же самое уравнение F(x,y) = 0.
Аналогично устанавливается, что цилиндрические поверхности с образующими, параллельными оси Ox или Oy, задаются соответственно уравнениями F(y,z) = 0 или F(x,z) = 0.
| | следующая лекция ==> | |
Задачи для самостоятельной работы. | | | Цилиндры второго порядка |
Не нашли то, что искали? Google вам в помощь!
Видео:Цилиндрические поверхностиСкачать
Уравнения поверхности и линии в пространстве с примерами решения
Содержание:
Видео:553. Уравнение цилиндрической поверхности.Скачать
Уравнения поверхности и линии в пространстве
Определение: Уравнение м поверхности в пространстве Oxyz называется такое уравнение между переменными х, у у z, которому удовлетворяют координаты всех точек данной поверхности и не удовлетворяют координаты точек, не лежащих на этой поверхности. То есть если
— уравнение поверхности Р (рис. 189), то при М(х, у, z)
Таким образом, уравнение (1) выполнено тогда и только тогда, когда точка М(х, у, z) принадлежит данной поверхности. Координаты произвольной точки поверхности называются текущими координатами точки. Поэтому составить уравнение поверхности — это значит найти связь между текущими координатами ее точек.
Пример (уравнения координатных плоскостей):
Каждая точка М(х, у, z), лежащая на координатной плоскости Oyz, имеет абсциссу х = 0; обратно, если для какой-нибудь точки М(х, у, z) абсцисса ее х = 0, то эта точка расположена на плоскости Oyz. Следовательно,
— уравнение координатной плоскости Oyz. Аналогично,
— соответственно уравнения координатных плоскостей Oxz и Оху.
Формула обозначает, что точка М принадлежит Р. Формула обозначает, что точка N не принадлежит Р.
В более общем случае
— уравнения трех плоскостей, перпендикулярных соответствующим координатным осям Ох, Оу, Ог и отсекающих на них отрезки, численно равные
Теорема: Уравнение цилиндрической поверхности, образующие которой параллельны координатной оси, не содержит текущей координаты, одноименной с этой координатной осью, и обратно.
Доказательство: Пусть, например, цилиндрическая поверхность Р образована перемещением прямой (образующая) вдоль заданной линии L, лежащей в плоскости Оху (направляющая) (рис. 190).
Обозначим через М(х, у, z) точку поверхности Р с текущими координатами х, у и z. Образующая MN, проходящая через точку М, пересекает направляющую, очевидно, в точке N(x, у, 0).
— уравнение направляющей L в координатной плоскости Оху. Этому уравнению удовлетворяют координаты точки N. Так как точка М поверхности Р имеет ту же самую абсциссу хиту же самую ординату у, что и точка N, а переменная г в уравнение (3) не входит, то координаты точки М также удовлетворяют уравнению (3). Таким образом, координаты любой точки М(х, у, z) поверхности Р удовлетворяют уравнению (3). Обратно, если координаты какой-нибудь точки М(х, у, z) удовлетворяют уравнению (3), то эта точка расположена на прямой MN || Оz такой, что ее след на плоскости Оху, точка N(x, у, 0), лежит на линии L, а значит, точка М принадлежит цилиндрической поверхности Р. Следовательно,
является уравнением цилиндрической поверхности в пространстве Oxyz, причем в этом уравнении отсутствует координата z.
Пример (уравнение эллиптического цилиндра):
Эллиптический цилиндр, в основании которого лежит эллипс с полуосями а и b, а осью служит ось Оz (рис. 191), на основании предыдущей теоремы имеет уравнение
В частности, при а = b получаем уравнение кругового цилиндра
Линию L в пространстве можно задать как пересечение двух данных поверхностей (рис. 192). Точка , лежащая на линии L, принадлежит как поверхности так и поверхности , и, следовательно, координаты этой точки удовлетворяют уравнениям обеих поверхностей.
Поэтому под уравнениями линии в пространстве понимается совокупность двух уравнений:
являющихся уравнениями поверхностей, определяющих данную линию.
Не нужно думать, что для нахождения уравнений линий систему (4) следует «решить». Этого, вообще говоря, нельзя сделать, так как число уравнений системы (4) меньше числа неизвестных. Точный смысл, который придается равенствам (4), следующий: линии L принадлежат те и только те точки , координаты которых удовлетворяют обоим уравнениям системы (4).
Заметим, что данную линию можно по-разному задавать как пересечение поверхностей. Поэтому линии в пространстве соответствует бесчисленное множество равносильных между собой систем уравнений.
Определение: Уравнениями линии в пространстве называется такая пара уравнений между переменными , которой удовлетворяют координаты каждой точки, лежащей на данной линии, и не удовлетворяют координаты любой точки, не лежащей на этой линии.
Пример (уравнения координатных осей):
Ось Ох можно, рассматривать как пересечение координатных плоскостей Оху и Oxz. Поэтому
— уравнения оси Ох. Аналогично,
— уравнения осей Оу и Oz соответственно.
Пример:
Написать уравнения окружности Г радиуса R = 1, центр которой находится в точке С(0, 0, 2) и плоскость которой параллельна координатной плоскости Оху (рис. 193).
Решение:
Окружность Г можно рассматривать как пересечение кругового цилиндра радиуса 1 с осью Oz и горизонтальной плоскости, расположенной выше координатной плоскости Оху на две единицы. Поэтому уравнения данной окружности есть
В механике линию L часто рассматривают как след движущейся точки (рис. 194). Пусть х, у, z — текущие координаты точки М линии L. Так как с течением времени точка М перемещается и ее координаты меняются, то они являются функциями времени t. Следовательно, имеем
где — некоторые определенные функции. Обобщая уравнения (5), под t понимают вспомогательную переменную (параметр)> не обязательно время; поэтому уравнения (5) носят название параметрических уравнений линии в пространстве.
Исключая из уравнений (5) параметр t, мы получим два соотношения между текущими координатами х, у и z, которые представляют собой уравнения некоторых поверхностей, проходящих через данную линию.
Пример:
Написать уравнения винтовой линии радиуса а и шага (рис. 195).
Решение:
Пусть М (х, у, z) — текущая точка винтовой линии, М’ (х, у, 0) — ее проекция на плоскость Оху.
Приняв за параметр и учитывая, что аппликата г винтовой линии растет пропорционально углу поворота t, будем иметь
Для определения коэффициента пропорциональности b положим ; тогда . Следовательно,
Исключая параметр t из первого и второго, а также из первого и третьего уравнений (6), получаем
Следовательно, винтовая линия представляет собой пересечение кругового цилиндра с образующими, параллельными оси Oz, и цилиндрической поверхности с образующими, параллельными оси Оу, и имеющей своей направляющей косинусоиду, лежащую в плоскости . Из уравнений (6′) также вытекает, что проекция винтовой линии (6′) на координатную плоскость Оху есть окружность, а на координатную плоскость — косинусоида.
Текущую точку кривой L можно характеризовать ее радиусом-вектором («следящий радиус-вектор») (рис. 196)
( — орты). Тогда из (5) получаем векторное уравнение линии
— так называемая вектор-функция скалярного аргумента t.
В механике в качестве параметра t обычно берут время. В таком случае линию (7) называют траекторией точки М(х, у, z).
Множество всех точек М(х, у, г) пространства, координаты которых удовлетворяют данному уравнению (или системе уравнений), называется геометрическим образом (графиком) данного уравнения (или системы уравнений).
Пример:
Какой геометрический образ соответствует уравнению
Решение:
Из уравнения (8) получаем или . Следовательно, графиком уравнения (8) является пара плоскостей, параллельных координатной плоскости Оху и отстоящих от нее на расстояниях, равных единице (рис. 197).
Пример:
Какой геометрический образ соответствует паре уравнений
Решение:
Искомый график представляет собой пересечение плоскостей х = 2 и у = 3 и, следовательно, является прямой линией, параллельной оси Oz и имеющей след N (2, 3, 0) на координатной плоскости Оху (рис. 198).
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Общее уравнение плоскости
- Угол между плоскостями
- Понятие о производной вектор-функции
- Криволинейные интегралы
- Прямоугольная система координат на плоскости и ее применение
- Линии второго порядка
- Полярные координаты
- Непрерывность функции
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
💥 Видео
Лекция 10 Торс, коническая и цилиндрическая поверхности.Линейчатые поверхности с одной направляющейСкачать
10. Цилиндрические поверхности. Поверхности вращенияСкачать
11 класс, 27 урок, Сечения цилиндрической поверхностиСкачать
№535. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 60Скачать
Урок 1. Цилиндрическая поверхность, образующие и ось цилиндрической поверхности.Скачать
Цилиндрические поверхностиСкачать
11 класс, 25 урок, Сфера, вписанная в цилиндрическую поверхностьСкачать
Поверхности второго порядкаСкачать
§64 Поверхности вращенияСкачать
Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать
Поверхности 2го порядка. КлассификацияСкачать
Поверхности второго порядка. Поверхности вращенияСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
ДИКАЯ ДИЧЬ в тесте по ангему | Уравнения цилиндрической поверхности 🔥🔥🔥Скачать
Поверхности цилиндрические, конические, вращения. Cylindrical, conic surfaces and of revolution onesСкачать
Лекция 5. Поверхности вращения. часть 1.Скачать
Усеченный цилиндр: проекции сечения, изометрия, развертка поверхностиСкачать