Если через каждую точку кривой L провести прямую, параллельно данному вектору а, то получим поверхность, которая называется цилиндрической поверхностью. Прямые, параллельные вектору а и принадлежащие цилиндрической поверхности, называются образующими этой поверхности, а кривая L называется направляющей цилиндрической поверхности (рис. 225).
Если в сечении цилиндрической поверхности плоскостью, перпендикулярной к ее образующим, (в нормальном сечении) получается окружность, то цилиндрическая поверхность называется круговой. Если в сечении получается эллипс, то цилиндрическую поверхность называют эллиптической, если гипербола — гиперболической, если парабола — параболической.
Пусть в пространстве дана прямоугольная система координат Oxyz, и пусть в плоскости хОу дана кривая L, уравнение которой в этой плоскости имеет вид
Составим уравнение цилиндрической поверхности с образующими, параллельными вектору a = (α; β; γ), γ =/= 0, если за направляющую принята кривая L (рис.226).
Рассмотрим произвольную точку этой поверхности М(х; у; z). Образующая l, проходящая через точку М, пересечет плоскость хОу в точке N, лежащей на кривой L. Если координаты точки N в пространстве обозначить (х1; у1; 0), то вектор (overrightarrow) имеет координаты
По определению цилиндрической поверхности векторы а и (overrightarrow) коллинеарны, т. е.
следовательно, имеем систему уравнений
Решив эту систему уравнений относительно λ, x1и у1, получим
Так как точка N лежит на кривой L, то F(х1; у1) = 0. Заменив х1 и у1 по формулам (2), получим уравнение
которое, очевидно, и будет уравнением данной цилиндрической поверхности.
Задача 1. Составить уравнение цилиндрической поверхности, у которой направляющая лежит в плоскости хОу и имеет уравнение х 2 + у 2 = 4, а образующие параллельны вектору а = (0; 1; 1).
Так как, согласно условию задачи F(x; у) = х 2 + у 2 — 4 и α = 0, β = 1, γ = 1, то в силу формулы (3) уравнение данной цилиндрической поверхности имеет вид
Эта поверхность изображена на рис. 227.
Аналогично можно показать, что если направляющая цилиндрической поверхности L лежит в плоскости xOz и определяется уравнением F(x; z) = 0, а вектор а не параллелен этой плоскости, то цилиндрическая поверхность имеет уравнение
Наконец, если L определяется уравнением F(у; z) = 0 и а не параллелен плоскости yOz, то уравнение цилиндрической поверхности имеет вид
Отметим, что если направляющая цилиндрической поверхности лежит в плоскости
хОу, а образующие параллельны оси Oz, то уравнение цилиндрической поверхности в пространстве совпадает с уравнением направляющей и имеет вид
Уравнение (4), как уравнение множества точек плоскости, определяет кривую L, в то же самое время уравнение (4), как уравнение множества точек пространства, определяет цилиндрическую поверхность.
Итак, каждое из уравнений
можно истолковать двояко: если это уравнение множества точек плоскости, то это уравнение линии L, лежащей в плоскости своих переменных; если же это уравнение множества точек пространства, то каждое из этих уравнений определяет цилиндрическую поверхность с направляющей L и образующими, параллельными оси oтсутствующей переменной.
Рассмотрим несколько примеров.
на плоскости хОу определяет окружность с центром в начале координат и радиусом r (рис. 228, а).
Это жe уравнение в пространстве определяет круговую цилиндрическую поверхность, направляющей которой является окружность, лежащая в плоскости хОу, а образующие параллельны оси Oz (рис. 228, б).
на плоскости xOz определяет окружность с центром в начале координат и радиусом
Это же уравнение в пространстве определяет круговую цилиндрическую поверхность, направляющей которой является окружность, лежащая в плоскости xOz, а образующие параллельны оси Оу (рис. 229, б).
и на плоскости, и в пространстве определяет пустое множество, так как сумма неотрицательных чисел не может быть числом отрицательным.
на плоскости хОу определяет эллипс с центром в начале координат и полуосями а и b (рис. 230, а).
Это же уравнение в пространстве определяет эллиптическую цилиндрическую поверхность с направляющей в плоскости хОу и образующими, параллельными оси Oz (рис. 230, б).
на плоскости хОу определяет гиперболу с центром в начале координат и полуосями а и b (рис. 231, а).
В пространстве это уравнение определяет гиперболическую цилиндрическую поверхность с образующими, параллельными оси Oz (рис. 231, б).
на плоскости хОу определяет параболу (рис. 232, а), а в пространстве — параболическую цилиндрическую поверхность с образующими, параллельными оси Oz (рис. 232, б).
Задача 2. Определить вид поверхности 3x 2 + 6y 2 — 24 = 0.
Данное уравнение приведем к виду:
Это уравнение в пространстве определяет эллиптическую цилиндрическую поверхность с направляющей в плоскости хОу и образующими, параллельными оси Oz.
Видео:553. Уравнение цилиндрической поверхности.Скачать
Тема: Линейные операции над векторами. Скалярное произведение векторов
Главная > Документ
Информация о документе | |
Дата добавления: | |
Размер: | |
Доступные форматы для скачивания: |
Тема: Поверхности вращения.
Цилиндрические поверхности
1. Поверхности вращения.
пределение. Поверхностью вращения называется поверхность, образованная вращением плоской линии вокруг оси, лежащей в плоскости этой линии.
Пусть , тогда ее можно задать уравнениями
Уравнение поверхности, образованной вращением линии вокруг оси Oz будет иметь вид:
(1)
2. Цилиндрические поверхности .
Пусть в пространстве дана некоторая плоская линия и вектор , не параллельный плоскости этой линии.
Определение . Цилиндрической поверхностью называется множество точек пространства, лежащих на прямых параллельных данному вектору и пересекающих данную линию .
иния называется направляющей цилиндрической поверхности, прямые называются образующими.
Рассмотрим частный случай: направляющая линия лежит в плоскости xOy : и задается уравнениями: а направляющий вектор образующих имеет координаты , .
В этом случае уравнение цилиндрической поверхности имеет вид
. (2)
Получите уравнение поверхности вращения (1).
Получите уравнение цилиндрической поверхности (2).
Основные типовые задачи.
Составление уравнения поверхности вращения по уравнениям направляющей и оси вращения.
Составление уравнения цилиндрической поверхности по уравнениям направляющей и направляющему вектору образующих.
Примеры решения задач.
Задача 1. В плоскости yOz дана окружность с центром в точке (0; 4; 0) радиуса 1. Написать уравнение поверхности, образованной вращением данной окружности вокруг оси Oz .
Уравнения окружности, лежащей в плоскости yOz с центром в точке (0; 4; 0) радиуса 1, имеют вид
(3)
При вращении этой окружности вокруг оси Oz получается поверхность, называемая тором. Пусть М – произвольная точка на торе. Проведем через точку М плоскость , перпендикулярную оси вращения, т.е. оси Oz , в сечении получим окружность. Обозначим центр этой окружности P , а точку пересечения плоскости с окружностью, образующей поверхность вращения, – N .
Обозначим координаты точки M ( x , y , z ), тогда P (0, 0, z ), а N(0,, z ). Так как точки M и N лежат на окружности с центром в точке P , то
,
.
Последнее равенство запишем в координатах
. (4)
Точка N лежит на окружности, при вращении которой образуется тор, значит ее координаты должны удовлетворять уравнениям (3), запишем первое уравнение системы (3)
,
,
.
Возведем последнее равенство в квадрат.
и подставим выражение для из равенства (4), получим
(5)
Уравнение (5) – искомое.
Ответ: .
Задача 2. Составить уравнение цилиндрической поверхности, если направляющая лежит в плоскости xOy и имеет уравнение , а образующие параллельны вектору .
Пусть точка M ( x , y , z ) – произвольная точка цилиндрической поверхности. Проведем через точку М образующую l , она пересекает направляющую в точке . Так как направляющая лежит в плоскости xOy , то . Составим канонические уравнения прямой l
.
Приравняем первую и вторую дроби к последней
(6)
Точка N лежит на направляющей, значит ее координаты удовлетворяют ее уравнению:
.
Подставляя выражения для и из системы (6), получим
. (7)
(7) – искомое уравнение.
Ответ: .
Задачи для самостоятельного решения.
Составить уравнение поверхности, образованной вращением параболы , х= 0 вокруг оси Oz .
Составить уравнение поверхности, образованной вращением вокруг оси Oy каждой из следующих кривых, расположенной в плоскости xOy :
а) эллипса ;
б) гиперболы ;
в) параболы .
Написать уравнение поверхности, образованной вращением синусоиды вокруг оси Oz .
Напишите уравнение поверхности, образованной вращением прямой , вокруг оси Ox .
Докажите, что поверхность, образованная вращением вокруг оси Oz линии l , заданной уравнениями , имеет уравнение .
Составить уравнение цилиндрической поверхности в каждом из следующих случаев:
а) Направляющая лежит в плоскости и имеет уравнение , а образующие параллельны вектору ;
б) направляющая лежит в плоскости yOz и имеет уравнение , а образующие параллельны оси Ox ;
в) направляющая лежит в плоскости xOz и является окружностью , а образующие параллельны оси Oy.
Напишите уравнение цилиндрической поверхности, если:
а) направляющая задана уравнениями а образующая параллельна вектору ;
б) направляющая задана уравнениями а образующая параллельна прямой x = y = z .
Напишите уравнение цилиндрической поверхности, направляющая которой задана уравнениями а образующая параллельна оси Ox .
Напишите уравнение цилиндрической поверхности, направляющая которой задана уравнениями а образующая перпендикулярна плоскости направляющей.
Цилиндр, образующие которого перпендикулярны плоскости , описан около сферы . Составить уравнение этого цилиндра.
Написать уравнение цилиндрической поверхности вращения, если ось вращения совпадает с осью Oz , а радиус r= 5.
Составить уравнение круговой цилиндрической поверхности, если известны уравнения ее оси , , и координаты одной из ее точек .
Написать уравнение круговой цилиндрической поверхности, если известны уравнения ее оси l и координаты одной из ее точек М :
а) , , , М (2; 0; 1);
б) l : , М (2; –1; 1).
Тема: Конические поверхности.
Пусть в пространстве дана некоторая плоская линия и точка S , не лежащая в плоскости этой линии.
Определение . Конической поверхностью называется множество точек пространства, лежащих на прямых проходящих через данную точку S и пересекающих данную линию .
Линия называется направляющей конической поверхности, точка S – вершиной, прямые называются образующими.
ассмотрим частный случай: вершина S совпадает с началом координат, направляющая линия лежит в плоскости, параллельной плоскости xOy : z = c , и задается уравнением: .
В этом случае уравнение конической поверхности имеет вид
. (1)
Если направляющая является эллипсом с центром на оси Oz ,
то получаем поверхность, называемую конусом второго порядка, уравнение этой поверхности имеет вид:
. (2)
Ось Oz в этом случае является осью конуса второго порядка.
Сечения конуса второго порядка:
Пусть плоскость не проходит через вершину конуса второго порядка, тогда плоскость пересекает конус:
а) по эллипсу, если пересекает все образующие конуса;
б) по гиперболе, если параллельна двум образующим конуса;
в) по параболе, если параллельна одной образующей конуса.
Получите уравнение конической поверхности (1).
Получите уравнение конической поверхности второго порядка (2).
Основные типовые задачи.
Составление уравнения конической поверхности по координатам вершины и уравнению направляющей.
Примеры решения задач.
Задача 1. Написать уравнение конической поверхности, вершина которой находится в начале координат, а направляющая задана уравнениями
Пусть точка M ( x , y , z ) – произвольная точка конической поверхности. Проведем через эту точку образующую l , она пересечет направляющую в точке . Запишем канонические уравнения прямой l , как уравнения прямой, проходящей через точку N и вершину конуса О(0, 0, 0)
,
.
Выразим из последней системы и : , . Т.к. точка N лежит на направляющей конической поверхности, то ее координаты должны удовлетворять уравнениям направляющей:
(3)
Подставим найденные выражения во второе уравнение системы (3)
,
,
,
. (4)
, . (5)
Подставляем (4) и (5) в первое уравнение системы (3)
,
,
.
Полученное уравнение является искомым уравнением конической поверхности.
Задачи для самостоятельного решения.
Написать уравнение конической поверхности, если:
а) направляющая в плоскости xOy задана уравнением , а вершина имеет координаты (1; 0; 1);
б) направляющая в плоскости xOy задана уравнением , а вершина имеет координаты (0; 0; 1);
в) направляющая в плоскости xOy задана уравнением , а вершина имеет координаты (0; 0; 1).
г) направляющая в плоскости xOy задана уравнением , а вершина имеет координаты (0; 0; с ).
Составить уравнение конической поверхности с вершиной в точке S(1; 2; 4), образующие которой составляют с плоскостью угол =45.
Написать уравнение конической поверхности, направляющая которой задана уравнениями а вершина находится в точке .
Найти уравнение конической поверхности с вершиной в начале координат, которая проходит через линию пересечения:
а) гиперболоида и сферы ;
б) эллипсоида и плоскости .
Напишите уравнение круговой конической поверхности, если известны уравнения ее оси l : и координаты одной из ее точек М(3; –4; 5).
Доказать, что уравнение определяет конус с вершиной в начале координат.
Видео:Цилиндрические поверхностиСкачать
ЦИЛИНДРИЧЕСКИЕ ПОВЕРХНОСТИ
План: 1. Определение цилиндрических поверхностей.
2. Классификация цилиндрических поверхностей.
Вопрос
Определение 1. Поверхность, обладающая тем свойством, что вместе с каждой своей точкой М она содержит всю прямую, проходящую через точку М, параллельно данному ненулевому вектору , называется цилиндрической поверхностьюили цилиндром.
Цилиндрическая поверхность может быть образована следующим образом:
Пусть γ – некоторая линия, а – ненулевой вектор. Поверхность, образованная всеми прямыми, каждая из которых проходит через некоторую точку линии γ || будет цилиндрической.
Эта линия γ называется направляющей поверхности, а параллельные прямые — образующими.
Теорема. Если направляющая цилиндрической поверхности в прямоугольной декартовой системе координат R=(O, ) задана уравнениями
γ: , а образующие || , то эта цилиндрическая поверхность определяется уравнением F(x, y)=0 (*).
Рассмотрим только те цилиндрические поверхности, которые являются поверхностями второго порядка:
Определение 2.Поверхность, которая в некоторой декартовой системе координат задается уравнением , называется эллиптическим цилиндром; поверхность, которая задается уравнением , называется гиперболическим цилиндром, а которая задается уравнением называется параболическим цилиндром.
Для того чтобы построить поверхности, задаваемые этими уравнениями достаточно построить на плоскости направляющую, уравнение которой на этой плоскости совпадает с уравнением самой поверхности, и затем через точки направляющей провести образующие параллельно оси . Для наглядности следует построить также одно-два сечения плоскостями, параллельными плоскости . В каждом таком сечении получим такую же кривую, как и исходная направляющая.
Примечание: Аналогично, если образующие цилиндрической поверхности параллельны другим осям координат, то такая цилиндрическая поверхность задается уравнениями:
1. В плоскости ХОZ:
Направляющая цилиндрической поверхности задана уравнениями
γ: , а образующие || , то эта цилиндрическая поверхность определяется уравнением F(x, z)=0 (*).
2. В плоскости YОZ:
Направляющая цилиндрической поверхности задана уравнениями
γ: , а образующие || , то эта цилиндрическая поверхность определяется уравнением F(y, z)=0 (*).
Вопрос
Пересечем цилиндрическую поверхность плоскостями, непараллельными ее образующим. В сечении получаются различные линии (эллипс, гипербола, парабола). Поэтому цилиндрическая поверхность называется эллиптической, гиперболической, параболической.
Классифицировать цилиндрические поверхности можно на основании вида направляющей. Существует 9 классов цилиндрических поверхностей.
Если прямоугольную декартову систему координат R=(O, ) выбрать так, чтобы образующие цилиндрической поверхности были параллельны вектору , а направляющая линия γ в системе координат R=(O, ) имела каноническое уравнение, то цилиндрическая поверхность определяется следующими уравнениями.
№ | Каноническое уравнение | Название | Изображение |
1. | Эллиптический цилиндр | ||
2. | Мнимый эллиптический цилиндр | Нет изображения | |
3. | Пара мнимых плоскостей пересекающихся по действительной прямой (ось OZ) | ||
4. | Гиперболический цилиндр | ||
5. | Пара плоскостей пересекающихся по OZ | ||
6. | Параболический цилиндр | ||
7. | Пара параллельных плоскостей | ||
8. | Пара мнимых параллельных плоскостей | Нет изображения | |
9. | Пара совпадающих плоскостей по YOZ |
Дата добавления: 2018-09-24 ; просмотров: 2853 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
📹 Видео
§63 Цилиндрические поверхностиСкачать
Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать
11 класс, 25 урок, Сфера, вписанная в цилиндрическую поверхностьСкачать
Лекция 10 Торс, коническая и цилиндрическая поверхности.Линейчатые поверхности с одной направляющейСкачать
11 класс, 27 урок, Сечения цилиндрической поверхностиСкачать
Цилиндрические поверхностиСкачать
Урок 1. Цилиндрическая поверхность, образующие и ось цилиндрической поверхности.Скачать
Поверхности второго порядкаСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Поверхности цилиндрические, конические, вращения. Cylindrical, conic surfaces and of revolution onesСкачать
10. Цилиндрические поверхности. Поверхности вращенияСкачать
555. Уравнение конической поверхности.Скачать
Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
ДИКАЯ ДИЧЬ в тесте по ангему | Уравнения цилиндрической поверхности 🔥🔥🔥Скачать
556. Уравнение конической поверхностиСкачать
§64 Поверхности вращенияСкачать