Уравнение цилиндра в трехмерном пространстве

Уравнение цилиндра в трехмерном пространстве

С помощью векторов мы ввели понятие пространства и его размерности, в частности трехмерного. Рассмотрим в нем поверхности, которые «похожи» на поверхности, образованные вращением кривой второго порядка вокруг ее оси симметрии. Например, сфера может быть получена вращением окружности вокруг диаметра. Поверхность, описываемая некоторой линией, вращающейся вокруг неподвижной прямой d, называется поверхностью вращения с осью вращения d. Наряду с такими поверхностями мы встретимся и с более сложными случаями.

Пусть в пространстве задана прямоугольная декартова система координат.

Поверхность второго порядка – геометрическое место точек, декартовы прямоугольные координаты которых, удовлетворяют уравнению вида

в котором хотя бы один из коэффициентов Уравнение цилиндра в трехмерном пространстве отличен от нуля. Уравнение (2.48) называется общим уравнением поверхности второго порядка.

Уравнение (2.48) может и не определять действительного геометрического образа, но для сохранения общности в таких случаях говорят, что оно определяет мнимую поверхность второго порядка. В зависимости от значений коэффициентов общего уравнения (2.48) оно может быть преобразовано с помощью параллельного переноса и поворота системы координат к одному из канонических видов, каждому из которых соответствует определённый класс поверхностей второго порядка. Среди них выделяют пять основных классов поверхностей: эллипсоиды, гиперболоиды, параболоиды, конусы и цилиндры. Для каждой из этих поверхностей существует декартова прямоугольная система координат, в которой поверхность задается простым уравнением, называемым каноническим уравнением.

Перечисленные поверхности второго порядка относятся к так называемым нераспадающимся поверхностям второго порядка. Можно говорить о случаях вырождения – распадающихся поверхностях второго порядка, к которым относятся: пары пересекающихся плоскостей, пары мнимых пересекающихся плоскостей, пары параллельных плоскостей, пары мнимых параллельных плоскостей, пары совпадающих плоскостей.

Наша цель – указать канонические уравнения для поверхностей второго порядка и показать, как выглядят эти поверхности.

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется эллипсоидом (рис. 2.22) .

1. Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что Уравнение цилиндра в трехмерном пространстве .

2. Эллипсоид обладает

· центральной симметрией относительно начала координат,

· осевой симметрией относительно координатных осей,

· плоскостной симметрией относительно начала координат.

3. В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается эллипс (см. рис. 2.22).

Уравнение цилиндра в трехмерном пространствеТак же, как для эллипса, точки пересечения эллипсоида с координатными осями называются вершинами эллипсоида, центр симметрии – центром эллипсоида. Числа а, b , с называются полуосями. Если полуоси попарно различны, то эллипсоид называется трехосным.

Если две полуоси равны друг другу, то эллипсоид называется эллипсоидом вращения. Эллипсоид вращения может быть получен вращением эллипса вокруг одной из осей.

Примечание. Сфера является частным случаем эллипсоида при а= b . Тогда все равные полуоси обозначают R и уравнение (2.49) после умножения на R 2 принимает вид Уравнение цилиндра в трехмерном пространстве .

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется эллиптическим параболоидом (рис. 2.23) .

Уравнение цилиндра в трехмерном пространстве

1. Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z ≥ 0 и принимает сколь угодно большие значения.

2. Эллиптический параболоид обладает

· осевой симметрией относительно оси 0z ,

· плоскостной симметрией относительно координатных осей 0xz и 0yz .

3. В сечении эллиптического параболоида плоскостью, ортогональной оси 0z , получается эллипс, а плоскостями, ортогональными осям 0x и 0y –парабола. (см. рис. 2.23).

Можно получить эллиптический параболоид симметричный относительно оси 0х или 0у, для чего нужно в уравнении (2.50) поменять между собой переменные х и z или у и z соответственно.

Если полуоси равны a = b , то параболоид называется параболоидом вращения и может быть получен вращением параболы вокруг ее оси симметрии. При этом в сечении параболоида вращения плоскостью, перпендикулярной оси 0z , получается окружность.

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется гиперболическим параболоидом (рис . 2.24).

Свойства гиперболического параболоида.

1. Гиперболический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.

2. Гиперболический параболоид обладает

· осевой симметрией относительно оси 0z ,

· плоскостной симметрией относительно координатных плоскостей 0xz и 0yz .

Уравнение цилиндра в трехмерном пространстве

4. Гиперболический параболоид может быть получен поступательным перемещением в пространстве параболы так, что ее вершина перемещается вдоль другой параболы, ось которой параллельна оси первой параболы, а ветви направлены противоположно, причем их плоскости взаимно перпендикулярны.

5. Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется однополостным гиперболоидом (рис. 2.25) .

Уравнение цилиндра в трехмерном пространстве

Свойства однополостного гиперболоида.

1. Однополостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.

2. Однополостный гиперболоид обладает

· центральной симметрией относительно начала координат,

· осевой симметрией относительно всех координатных осей,

· плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат 0z , получается эллипс, а плоскостями, ортогональными осям 0x и 0y, – гипербола (см. рис. 2.25).

Если в уравнении (2.52) a = b , то сечения однополостного гиперболоида плоскостями, параллельными плоскости х0у, являются окружностями. В этом случае поверхность называется однополостным гиперболоидом вращения.

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется двуполостным гиперболоидом (рис. 2.26) .

Уравнение цилиндра в трехмерном пространстве

1. Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что | z | c и неограничен сверху.

2. Двуполостный гиперболоид обладает

· центральной симметрией относительно начала координат,

· осевой симметрией относительно всех координатных осей,

· плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат 0z , при | z |> c получается эллипс, при | z |= c – точка, а в сечении плоскостями, перпендику­лярными осям 0x и 0y , – гипербола (см. рис. 2.26).

Если в уравнении (2.53) a = b , то сечения двуполостного гиперболоида плоскостями, параллельными плоскости х0у, являются окружностями. В этом случае поверхность называется двуполостным гиперболоидом вращения.

Примечание. Если уравнение поверхности в прямоугольной системе координат имеет вид: F ( x 2 + y 2 ; z )=0, то эта поверхность – поверхность вращения с осью вращения 0z. Аналогично: F ( x 2 + z 2 ; y )=0 – поверхность вращения с осью вращения 0у, F ( z 2 + y 2 ; x )=0 – с осью вращения 0х

С учетом данного примечания могут быть записаны уравнения для рассмотренных выше поверхностей вращения, если осью вращения являются оси 0х или 0у.

Цилиндрическая поверхность образуется движением прямой линии, скользящей по некоторой неподвижной замкнутой или незамкнутой кривой и остающейся параллельной своему исходному положению. Множество прямолинейных образующих представляет собой непрерывный каркас цилиндрической поверхности. Через каждую точку поверхности проходит одна прямолинейная образующая. Неподвижная кривая, по которой скользит образующая, называется направляющей. Если направляющая линия является кривой второго порядка, то и цилиндрическая поверхность – второго порядка.

Если уравнение поверхности не содержит в явном виде какой–либо переменной, то это уравнение определяет в пространстве цилиндрическую поверхность с образующими, параллельными оси отсутствующего переменного и направляющей, которая в плоскости двух других переменных имеет то же самое уравнение.

Достаточно нарисовать на плоскости х0у направляющую, уравнение которой на этой плоскости совпадает с уравнением самой поверхности, и затем через точки направляющей провести образующие параллельно оси 0z. Для наглядности следует построить также одно–два сечения плоскостями, параллельными плоскости х0у. В каждом таком сечении получим такую же кривую, как и исходная направляющая. Аналогично поступают, рассматривая направляющую в плоскости х0z или у0z.

Цилиндрическая поверхность является бесконечной в направлении своих образующих. Часть замкнутой цилиндрической поверхности, заключенная между двумя плоскими параллельными сечениями, называется цилиндром, а фигуры сечения – его основаниями. Сечение цилиндрической поверхности плоскостью, перпендикулярной ее образующим, называется нормальным. В зависимости от формы нормального сечения цилиндры бывают:

1) эллиптические – нормальное сечение представляет собой эллипс (рис. 2.27а), каноническое уравнение

2) круговые – нормальное сечение круг, при a = b = r уравнение

3) гиперболические – нормальное сечение гипербола (рис. 2.27б), каноническое уравнение

4) параболические – нормальное сечение парабола (рис. 2.27в), каноническое уравнение

5) общего вида – нормальное сечение кривая случайного вида.

Если за основание цилиндра принимается его нормальное сечение, цилиндр называют прямым (рис. 2.27). Если за основание цилиндра принимается одно из косых сечений, цилиндр называют наклонным. Например, наклонные сечения прямого кругового цилиндра являются эллипсами. Наклонные сечения прямого эллиптического цилиндра в общем случае – эллипсы. Однако его всегда можно пересечь плоскостью, наклонной к его образующим, таким образом, что в сечении получится круг.

Уравнение цилиндра в трехмерном пространстве

Конической поверхностью называется поверхность, производимая движением прямой, перемещающейся в пространстве так, что она при этом постоянно проходит через неподвижную точку и пересекает данную линию. Данная прямая называется образующей, линия – направляющей, а точка – вершиной конической поверхности (рис. 2.28).

Уравнение цилиндра в трехмерном пространстве

Конусом называется тело, ограниченное частью конической поверхности, расположенной по одну сторону от вершины, и плоскостью, пересекающей все образующие по ту же сторону от вершины. Часть конической поверхности, ограниченная этой плоскостью, называется боковой поверхностью, а часть плоскости, отсекаемая боковой поверхностью, – основанием конуса. Перпендикуляр, опущенный из вершины на плоскость основания, называется высотой конуса.

Конус называется прямым круговым, если его основание есть круг, а высота проходит через центр основания. Такой конус можно рассматривать как тело, происходящее от вращения прямоугольного треугольника, вокруг катета как оси. При этом гипотенуза описывает боковую поверхность, а катет – основание конуса.

В курсе геометрии общеобразовательной школы рассматривается только прямой круговой конус, который для краткости называется просто конусом.

Если вершина конуса расположена в начале координат, направляющая кривая — эллипс с полуосями а и b, плоскость которого находится на расстоянии с от начала координат, то уравнение эллиптического конуса имеет вид:

Уравнение цилиндра в трехмерном пространстве ( a >0, b >0, c >0). (2.58)

При а = b конус становится круговым.

Примечание. По аналогии с коническими сечениями (аналогично теореме 2.1) существуют и вырожденные поверхности второго порядка. Так, уравнением второго порядка x 2 = 0 описывается пара совпадающих плоскостей, уравнением x 2 = 1 – пара параллельных плоскостей, уравнением x 2 – y 2 = 0 – пара пересекающихся плоскостей. Уравнение x 2 + y 2 + z 2 = 0 описывает точку с координатами (0;0;0). Существуют и другие вырожденные случаи. Полная теория поверхностей второго порядка рассматривается в курсе аналитической геометрии Уравнение цилиндра в трехмерном пространстве

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Поверхности второго порядка. Цилиндрические поверхности.

Поверхность S называется цилиндрической поверхностью с образующей Уравнение цилиндра в трехмерном пространстве, если для любой точки M0

этой поверхности прямая, проходящая через эту точку параллельно образующей Уравнение цилиндра в трехмерном пространстве, целиком принадлежит

Теорема (об уравнении цилиндрической поверхности).

Если в некоторой декартовой прямоугольной системе координат поверхность Уравнение цилиндра в трехмерном пространствеимеет

уравнение f(x,y)=0, то S — цилиндрическая поверхность с образующей, параллельной оси OZ.

Кривая, задаваемая уравнением f(x,y)=0 в плоскости z=0, называется направляющей цилиндрической

поверхности.

Если направляющая цилиндрической поверхности задаётся кривой второго порядка, то такая поверхность

называется цилиндрической поверхностью второго порядка.

Видео:Цилиндрические поверхностиСкачать

Цилиндрические поверхности

6.2. Цилиндрические поверхности

Или цилиндры. Под цилиндром также понимают геометрическое тело.

И это не совсем то, что обычно подразумевает обыватель – класс цилиндрических поверхностей не ограничивается чёрным цилиндром на голове:

Задача 167

Построить поверхность, заданную уравнением Уравнение цилиндра в трехмерном пространстве

…что за дела?! Не опечатка ли здесь? Вроде как дано уравнение эллипса…
Уравнение цилиндра в трехмерном пространстве

Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что использовали для плоскостей. Перепишем уравнение в виде Уравнение цилиндра в трехмерном пространстве, из которого следует, что «зет» принимает любые значения. Зафиксируем Уравнение цилиндра в трехмерном пространствеи построим в плоскости Уравнение цилиндра в трехмерном пространствеэллипс Уравнение цилиндра в трехмерном пространстве. Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз до бесконечности.

Данная поверхность называется эллиптическим цилиндром. Эллипс Уравнение цилиндра в трехмерном пространстве(на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют).

Ось Уравнение цилиндра в трехмерном пространствеявляется осью симметрии поверхности (но не её частью!).

Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению Уравнение цилиндра в трехмерном пространстве.

Пространственное неравенство Уравнение цилиндра в трехмерном пространствезадаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство Уравнение цилиндра в трехмерном пространствеопределяет множество точек вне цилиндра.

В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность:

Задача 168

Построить поверхность, заданную уравнением Уравнение цилиндра в трехмерном пространстве

Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».
Уравнение цилиндра в трехмерном пространстве

Сначала удобно построить окружность радиуса Уравнение цилиндра в трехмерном пространствев плоскости Уравнение цилиндра в трехмерном пространстве, а затем ещё пару окружностей сверху и снизу.

Полученные окружности (направляющие цилиндра) аккуратно соединяем 4 параллельными прямыми (образующими цилиндра):
Не забываем использовать пунктир для невидимых нам линий!

Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению Уравнение цилиндра в трехмерном пространстве. Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству Уравнение цилиндра в трехмерном пространстве, а неравенство Уравнение цилиндра в трехмерном пространствезадаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.

Часто эту поверхность некорректно называют круговым цилиндром. Круглым! Круговой цилиндр, строго говоря – есть тело, по той причине, что его направляющей является круг. И тело, кстати, определяется неравенством Уравнение цилиндра в трехмерном пространстве.

Задача 169

Построить поверхность Уравнение цилиндра в трехмерном пространствеи найти её проекцию на плоскость Уравнение цилиндра в трехмерном пространстве

Перепишем уравнение в виде Уравнение цилиндра в трехмерном пространстве, из которого следует, что «икс» принимает любые значения. Зафиксируем Уравнение цилиндра в трехмерном пространствеи в плоскости Уравнение цилиндра в трехмерном пространствеизобразим окружность Уравнение цилиндра в трехмерном пространстве– с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает цилиндр с осью симметрии Уравнение цилиндра в трехмерном пространстве. Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:
Уравнение цилиндра в трехмерном пространстве

На этот раз я ограничился кусочком цилиндра на промежутке Уравнение цилиндра в трехмерном пространствеи это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.

Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.

Теперь разбираемся с проекцией цилиндра на плоскость Уравнение цилиндра в трехмерном пространстве. Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку:

Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси Уравнение цилиндра в трехмерном пространствесмотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость Уравнение цилиндра в трехмерном пространстве. А кажется он бесконечной полосой, заключенным между прямыми Уравнение цилиндра в трехмерном пространстве, включая сами прямые. Данная проекция – это в точности область определения функций Уравнение цилиндра в трехмерном пространстве(верхний «жёлоб» цилиндра), Уравнение цилиндра в трехмерном пространстве(нижний «жёлоб»).

Давайте заодно проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси Уравнение цилиндра в трехмерном пространстве. Тенью (проекцией) цилиндра на плоскость Уравнение цилиндра в трехмерном пространствеявляется аналогичная бесконечная полоса – часть плоскости Уравнение цилиндра в трехмерном пространстве, ограниченная прямыми Уравнение цилиндра в трехмерном пространстве( Уравнение цилиндра в трехмерном пространстве– любое), включая сами прямые.

А вот проекция на плоскость Уравнение цилиндра в трехмерном пространственесколько иная. Если смотреть на цилиндр из острия оси Уравнение цилиндра в трехмерном пространстве, то он спроецируется в окружность (не круг!) единичного радиуса Уравнение цилиндра в трехмерном пространстве, с которой мы начинали построение.

Задача 170

Построить поверхность Уравнение цилиндра в трехмерном пространствеи найти её проекции на координатные плоскости

Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат – выясните, какую именно часть цилиндра задаёт функция Уравнение цилиндра в трехмерном пространстве. Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце книги.

Цилиндрические поверхности могут быть смещены относительно координатных осей, например:
Уравнение цилиндра в трехмерном пространстве– данное уравнение (по знакомым мотивам линий 2-го порядка) задаёт цилиндр единичного радиуса с линией симметрии, проходящей через точку Уравнение цилиндра в трехмерном пространствепараллельно оси Уравнение цилиндра в трехмерном пространстве.

Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.

Параболические цилиндры

Как следует из названия, направляющей такого цилиндра является парабола.

Задача 171

Построить поверхность Уравнение цилиндра в трехмерном пространствеи найти её проекции на координатные плоскости.

Не мог удержаться от этого примера =)

Решение: идём проторенной тропой. Перепишем уравнение в виде Уравнение цилиндра в трехмерном пространстве, из которого следует, что «зет» может принимать любые значения. Зафиксируем Уравнение цилиндра в трехмерном пространствеи построим обычную параболу Уравнение цилиндра в трехмерном пространствена плоскости Уравнение цилиндра в трехмерном пространстве, предварительно отметив тривиальные опорные точки Уравнение цилиндра в трехмерном пространстве. Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) Уравнение цилиндра в трехмерном пространствеи аккуратно соединяем их параллельными прямыми (образующими цилиндра):
Уравнение цилиндра в трехмерном пространстве

Напоминаю полезный технический приём: если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.
Теперь вторая часть задания, отыскание проекций:

1) Проекцией цилиндра на плоскость Уравнение цилиндра в трехмерном пространствеявляется парабола Уравнение цилиндра в трехмерном пространстве.

2) Проекция цилиндра на плоскость Уравнение цилиндра в трехмерном пространствепредставляет собой полуплоскость Уравнение цилиндра в трехмерном пространстве, включая ось Уравнение цилиндра в трехмерном пространстве

3) И, наконец, проекцией цилиндра на плоскость Уравнение цилиндра в трехмерном пространствеявляется вся плоскость Уравнение цилиндра в трехмерном пространстве.

Задача 172

Построить параболические цилиндры:

а) Уравнение цилиндра в трехмерном пространстве, ограничиться фрагментом поверхности в ближнем полупространстве;

б) Уравнение цилиндра в трехмерном пространствена промежутке Уравнение цилиндра в трехмерном пространстве

В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину.

Я и сам особо не заморачиваюсь над красотой линий – если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа 😉

Гиперболические цилиндры

Направляющими таких цилиндров являются гиперболы.
Уравнение цилиндра в трехмерном пространстве

Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, и поэтому я ограничился единственным схематическим чертежом гиперболического цилиндра Уравнение цилиндра в трехмерном пространстве.

Принцип рассуждения здесь точно такой же – обычная «школьная» гипербола Уравнение цилиндра в трехмерном пространствеиз плоскости Уравнение цилиндра в трехмерном пространственепрерывно «размножается» вверх и вниз до бесконечности.

🔥 Видео

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядка

553. Уравнение цилиндрической поверхности.Скачать

553. Уравнение цилиндрической поверхности.

§63 Цилиндрические поверхностиСкачать

§63 Цилиндрические поверхности

11 класс, 20 урок, Уравнение сферыСкачать

11 класс, 20 урок, Уравнение сферы

Поверхности второго порядкаСкачать

Поверхности второго порядка

Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

Уравнение плоскости. 11 класс.Скачать

Уравнение плоскости. 11 класс.

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР

11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Уравнения кривых в пространствеСкачать

Уравнения кривых в пространстве

Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Аналитическая геометрия, 1 урок, Векторы в пространстве

Поверхности второго порядка. Поверхности вращенияСкачать

Поверхности второго порядка. Поверхности вращения

Объём цилиндраСкачать

Объём цилиндра

Подготовка к зачету по аналитической геометрииСкачать

Подготовка к зачету по аналитической геометрии

11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

§55 Цилиндрическая система координатСкачать

§55 Цилиндрическая система координат
Поделиться или сохранить к себе: