Уравнение трапеции в системе координат

Уравнение средней линии

Как составить уравнение средней линии треугольника по координатам его вершин? Как записать уравнение средней линии трапеции?

Для решения этих задач используем свойства средней линии треугольника и средней линии трапеции.

Найти координаты середин двух сторон и составить уравнение прямой, проходящей через две найденные точки.

1) Написать уравнение прямой, содержащей среднюю линию треугольника с вершинами в точках A(-2;-4), B(1;6), C(7;0), пересекающей стороны AB и BC в точках M и N.

М — середина отрезка AB, N — середина BC.

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Составим уравнение прямой MN, например, в виде y=kx+b:

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Найти координату одной из точек средней линии и составить уравнение прямой, параллельной стороне треугольника.

Уравнение трапеции в системе координат

— середина отрезка AB. Составим уравнение прямой AC:

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Составим уравнение прямой MN как уравнение прямой, проходящей через точку M и параллельной прямой AC.

Угловой коэффициент прямой MN равен угловому коэффициенту прямой AC:

Уравнение трапеции в системе координат

то есть уравнение прямой MN ищем в виде

Уравнение трапеции в системе координат

Поскольку точка M принадлежит прямой, её координаты удовлетворяют этому уравнению. Отсюда находим значение b:

Уравнение трапеции в системе координат

Таким образом, уравнение прямой MN

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Аналогичные рассуждения применимы и при составлении уравнения средней линии трапеции.

Написать уравнение прямой, содержащей среднюю линию трапеции с вершинами в точках A(-2;1), B(1;5), C(4;-1), D(0;-3).

Сначала следует определить основания данной трапеции.

Составим уравнения сторон AD и BC. Если эти прямые параллельны, то AD и BC — основания трапеции. Если эти прямые не параллельны, то основания трапеции — AB и CD.

Уравнение трапеции в системе координат

Значит, уравнение прямой AD: y= -2k-3.
B(1;5), C(4;-1),

Уравнение трапеции в системе координат

Уравнение прямой BC: y= -2k+7.

Поскольку угловые коэффициенты прямых равны:

Уравнение трапеции в системе координат

то AD ∥BC, то есть AD и BC являются основаниями трапеции ABCD. Значит AB и CD — боковые стороны. Найдём координаты точек M и N — середины AB и CD соответственно.

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Уравнение трапеции в системе координат

Составим уравнение прямой MN, M(-1/2;3), N(2;-2):

Уравнение трапеции в системе координат

Уравнение AD — y= -2k-3, середина AB — M(-1/2;3). Составляем уравнение прямой MN, параллельной прямой AD.

Уравнение трапеции в системе координат

Значит уравнение MN ищем в виде y= -2x+b.

Так как прямая проходит через точку M, её координаты удовлетворяют уравнению прямой:

Уравнение трапеции в системе координат

Следовательно, уравнение средней линии трапеции ABCD имеет вид y=-2x+2 или 2x+y-2=0.

Содержание
  1. Даны координаты вершин трапеции ABCD: А (-2; -2), В(-3; 1), С (7; 7), D (3; 1). Напишите уравнение прямой, содержащей диагональ трапеции АС.
  2. Ваш ответ
  3. решение вопроса
  4. Похожие вопросы
  5. Трапеция. Формулы, признаки и свойства трапеции
  6. Основные свойства трапеции
  7. Сторона трапеции
  8. Формулы определения длин сторон трапеции:
  9. Средняя линия трапеции
  10. Формулы определения длины средней линии трапеции:
  11. Высота трапеции
  12. Формулы определения длины высоты трапеции:
  13. Диагонали трапеции
  14. Формулы определения длины диагоналей трапеции:
  15. Площадь трапеции
  16. Формулы определения площади трапеции:
  17. Периметр трапеции
  18. Формула определения периметра трапеции:
  19. Окружность описанная вокруг трапеции
  20. Формула определения радиуса описанной вокруг трапеции окружности:
  21. Окружность вписанная в трапецию
  22. Формула определения радиуса вписанной в трапецию окружности
  23. Другие отрезки разносторонней трапеции
  24. Формулы определения длин отрезков проходящих через трапецию:
  25. 🔍 Видео

Видео:ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 класс

Даны координаты вершин трапеции ABCD: А (-2; -2), В(-3; 1), С (7; 7), D (3; 1). Напишите уравнение прямой, содержащей диагональ трапеции АС.

Видео:№974. Даны координаты вершин трапеции ABCD: А (-2; -2), В (-3; 1). Напишите уравненияСкачать

№974. Даны координаты вершин трапеции ABCD: А (-2; -2), В (-3; 1). Напишите уравнения

Ваш ответ

Видео:Метод трапецийСкачать

Метод трапеций

решение вопроса

Видео:Криволинейная трапеция и ее площадь. 11 класс.Скачать

Криволинейная трапеция и ее площадь. 11 класс.

Похожие вопросы

  • Все категории
  • экономические 43,296
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,211
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать

Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Уравнение трапеции в системе координатУравнение трапеции в системе координат
Рис.1Рис.2

Видео:71 Равнобокая трапеция и метод координатСкачать

71 Равнобокая трапеция и метод координат

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

m =a + b
2

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Видео:Составить уравнение прямой, содержащей среднюю линию трапеции. Геометрия 9 классСкачать

Составить уравнение прямой, содержащей среднюю линию трапеции. Геометрия 9 класс

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a — h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a — c· cos α — d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с =hd =h
sin αsin β

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

m =a + b
2

2. Формула определения длины средней линии через площадь и высоту:

m =S
h

Видео:Лекция 22. Декартова система координат на плоскости и полярная система координатСкачать

Лекция 22. Декартова система координат на плоскости и полярная система координат

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
a + ba + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
2 m2 m

4. Формула высоты трапеции через площадь и длины оснований:

h =2S
a + b

5. Формула высоты трапеции через площадь и длину средней линии:

h =S
m

Видео:1636. Площадь криволинейной трапеции в декартовой системе координат.Скачать

1636. Площадь криволинейной трапеции в декартовой системе координат.

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 — 2 ad· cos β

d 2 = √ a 2 + c 2 — 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 =d 2 + ab —a ( d 2 — c 2 )
a — b
d 2 =c 2 + ab —a ( c 2 — d 2 )
a — b

d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab — d 2 2

d 2 = √ c 2 + d 2 + 2 ab — d 1 2

Видео:САМОЕ ПРОСТОЕ И БЫСТРОЕ РЕШЕНИЕ. Найдите площадь трапеции вершины которой имеют координатыСкачать

САМОЕ ПРОСТОЕ И БЫСТРОЕ РЕШЕНИЕ. Найдите площадь трапеции вершины которой имеют координаты

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

S =( a + b )· h
2

3. Формула площади через диагонали и угол между ними:

S =d 1 d 2· sin γ=d 1 d 2· sin δ
22

4. Формула площади через четыре стороны:

S =a + bc 2 —(( a — b ) 2 + c 2 — d 2)2
22( a — b )

5. Формула Герона для трапеции

S =a + b√ ( p — a )( p — b )( p — a — c )( p — a — d )
| a — b |

где

p =a + b + c + d— полупериметр трапеции.
2

Видео:Построение кривой в полярной системе координатСкачать

Построение кривой в полярной системе координат

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Видео:Видеоурок "Преобразование координат"Скачать

Видеоурок "Преобразование координат"

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

p =a + c + d 1
2

a — большее основание

Видео:Полярная система координатСкачать

Полярная система координат

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

r =h
2

Видео:§30 Уравнения кривых второго порядка в полярных координатахСкачать

§30 Уравнения кривых второго порядка в полярных координатах

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL =bKN = ML =aTO = OQ =a · b
22a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

🔍 Видео

9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6Скачать

9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6

Площадь фигуры, заданной в полярной системе координатСкачать

Площадь фигуры, заданной в полярной системе координат

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

§55 Цилиндрическая система координатСкачать

§55 Цилиндрическая система координат

ПОИ1.С. Площадь криволинейной трапеции в декартовой системе координат.Скачать

ПОИ1.С. Площадь криволинейной трапеции в декартовой системе координат.
Поделиться или сохранить к себе: