С высшей математикой тут явно перебор.
Это четыре прямые проходящие через соответствующие соседние вершины и имеющие область определения ограниченную координатой Х точек вершин. Попробуй сама их вывести. Это не сложно, если вспомнить уравнение прямой на плоскости проходящей через две заданные точки.
Чего-то вы напутали с координатами. Вот что получилось при построении (смотрите картинку). На трапецию никак не тянет.
- Уравнение средней линии
- Трапеция. Формулы, признаки и свойства трапеции
- Основные свойства трапеции
- Сторона трапеции
- Формулы определения длин сторон трапеции:
- Средняя линия трапеции
- Формулы определения длины средней линии трапеции:
- Высота трапеции
- Формулы определения длины высоты трапеции:
- Диагонали трапеции
- Формулы определения длины диагоналей трапеции:
- Площадь трапеции
- Формулы определения площади трапеции:
- Периметр трапеции
- Формула определения периметра трапеции:
- Окружность описанная вокруг трапеции
- Формула определения радиуса описанной вокруг трапеции окружности:
- Окружность вписанная в трапецию
- Формула определения радиуса вписанной в трапецию окружности
- Другие отрезки разносторонней трапеции
- Формулы определения длин отрезков проходящих через трапецию:
- 🎥 Видео
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Уравнение средней линии
Как составить уравнение средней линии треугольника по координатам его вершин? Как записать уравнение средней линии трапеции?
Для решения этих задач используем свойства средней линии треугольника и средней линии трапеции.
Найти координаты середин двух сторон и составить уравнение прямой, проходящей через две найденные точки.
1) Написать уравнение прямой, содержащей среднюю линию треугольника с вершинами в точках A(-2;-4), B(1;6), C(7;0), пересекающей стороны AB и BC в точках M и N.
М — середина отрезка AB, N — середина BC.
Составим уравнение прямой MN, например, в виде y=kx+b:
Найти координату одной из точек средней линии и составить уравнение прямой, параллельной стороне треугольника.
— середина отрезка AB. Составим уравнение прямой AC:
Составим уравнение прямой MN как уравнение прямой, проходящей через точку M и параллельной прямой AC.
Угловой коэффициент прямой MN равен угловому коэффициенту прямой AC:
то есть уравнение прямой MN ищем в виде
Поскольку точка M принадлежит прямой, её координаты удовлетворяют этому уравнению. Отсюда находим значение b:
Таким образом, уравнение прямой MN
Аналогичные рассуждения применимы и при составлении уравнения средней линии трапеции.
Написать уравнение прямой, содержащей среднюю линию трапеции с вершинами в точках A(-2;1), B(1;5), C(4;-1), D(0;-3).
Сначала следует определить основания данной трапеции.
Составим уравнения сторон AD и BC. Если эти прямые параллельны, то AD и BC — основания трапеции. Если эти прямые не параллельны, то основания трапеции — AB и CD.
Значит, уравнение прямой AD: y= -2k-3.
B(1;5), C(4;-1),
Уравнение прямой BC: y= -2k+7.
Поскольку угловые коэффициенты прямых равны:
то AD ∥BC, то есть AD и BC являются основаниями трапеции ABCD. Значит AB и CD — боковые стороны. Найдём координаты точек M и N — середины AB и CD соответственно.
Составим уравнение прямой MN, M(-1/2;3), N(2;-2):
Уравнение AD — y= -2k-3, середина AB — M(-1/2;3). Составляем уравнение прямой MN, параллельной прямой AD.
Значит уравнение MN ищем в виде y= -2x+b.
Так как прямая проходит через точку M, её координаты удовлетворяют уравнению прямой:
Следовательно, уравнение средней линии трапеции ABCD имеет вид y=-2x+2 или 2x+y-2=0.
Видео:КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать
Трапеция. Формулы, признаки и свойства трапеции
Параллельные стороны называются основами трапеции, а две другие боковыми сторонами
Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.
- Основы трапеции — параллельные стороны
- Боковые стороны — две другие стороны
- Средняя линия — отрезок, соединяющий середины боковых сторон.
- Равнобедренная трапеция — трапеция, у которой боковые стороны равны
- Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Рис.1 | Рис.2 |
Видео:Площадь трапеции на координатной плоскости (видео 54) | Подобие. Геометрия | МатематикаСкачать
Основные свойства трапеции
AK = KB, AM = MC, BN = ND, CL = LD
3. Средняя линия трапеции параллельна основаниям и равна их полусумме:
m = | a + b |
2 |
BC : AD = OC : AO = OB : DO
d 1 2 + d 2 2 = 2 a b + c 2 + d 2
Видео:№974. Даны координаты вершин трапеции ABCD: А (-2; -2), В (-3; 1). Напишите уравненияСкачать
Сторона трапеции
Формулы определения длин сторон трапеции:
a = b + h · ( ctg α + ctg β )
b = a — h · ( ctg α + ctg β )
a = b + c· cos α + d· cos β
b = a — c· cos α — d· cos β
4. Формулы боковых сторон через высоту и углы при нижнем основании:
с = | h | d = | h |
sin α | sin β |
Видео:Как найти площадь трапеции, заданной на координатной плоскостиСкачать
Средняя линия трапеции
Формулы определения длины средней линии трапеции:
1. Формула определения длины средней линии через длины оснований:
m = | a + b |
2 |
2. Формула определения длины средней линии через площадь и высоту:
m = | S |
h |
Видео:ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать
Высота трапеции
Формулы определения длины высоты трапеции:
h = c· sin α = d· sin β
2. Формула высоты через диагонали и углы между ними:
h = | sin γ · | d 1 d 2 | = | sin δ · | d 1 d 2 |
a + b | a + b |
3. Формула высоты через диагонали, углы между ними и среднюю линию:
h = | sin γ · | d 1 d 2 | = | sin δ · | d 1 d 2 |
2 m | 2 m |
4. Формула высоты трапеции через площадь и длины оснований:
h = | 2S |
a + b |
5. Формула высоты трапеции через площадь и длину средней линии:
h = | S |
m |
Видео:8 класс, 6 урок, ТрапецияСкачать
Диагонали трапеции
Формулы определения длины диагоналей трапеции:
d 1 = √ a 2 + d 2 — 2 ad· cos β
d 2 = √ a 2 + c 2 — 2 ac· cos β
2. Формулы диагоналей через четыре стороны:
d 1 = | √ | d 2 + ab — | a ( d 2 — c 2 ) |
a — b |
d 2 = | √ | c 2 + ab — | a ( c 2 — d 2 ) | a — b |
d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2
d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2
d 1 = √ c 2 + d 2 + 2 ab — d 2 2
d 2 = √ c 2 + d 2 + 2 ab — d 1 2
Видео:Теорема трапецииСкачать
Площадь трапеции
Формулы определения площади трапеции:
1. Формула площади через основания и высоту:
S = | ( a + b ) | · h |
2 |
3. Формула площади через диагонали и угол между ними:
S = | d 1 d 2 | · sin γ | = | d 1 d 2 | · sin δ |
2 | 2 |
4. Формула площади через четыре стороны:
S = | a + b | √ | c 2 — | ( | ( a — b ) 2 + c 2 — d 2 | ) | 2 |
2 | 2( a — b ) |
5. Формула Герона для трапеции
S = | a + b | √ ( p — a )( p — b )( p — a — c )( p — a — d ) |
| a — b | |
где
p = | a + b + c + d | — полупериметр трапеции. |
2 |
Видео:Метод трапецийСкачать
Периметр трапеции
Формула определения периметра трапеции:
1. Формула периметра через основания:
Видео:Трапеция, решение задач. Вебинар | МатематикаСкачать
Окружность описанная вокруг трапеции
Формула определения радиуса описанной вокруг трапеции окружности:
1. Формула радиуса через стороны и диагональ:
R = | a·c·d 1 |
4√ p ( p — a )( p — c )( p — d 1) |
где
p = | a + c + d 1 |
2 |
a — большее основание
Видео:СРЕДНЯЯ ЛИНИЯ ТРАПЕЦИИ #математика #егэ #shorts #профильныйегэСкачать
Окружность вписанная в трапецию
Формула определения радиуса вписанной в трапецию окружности
1. Формула радиуса вписанной окружности через высоту:
r = | h |
2 |
Видео:Линейное уравнение в координатной плоскости.Скачать
Другие отрезки разносторонней трапеции
Формулы определения длин отрезков проходящих через трапецию:
1. Формула определения длин отрезков проходящих через трапецию:
KM = NL = | b | KN = ML = | a | TO = OQ = | a · b |
2 | 2 | a + b |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
🎥 Видео
Уравнения стороны треугольника и медианыСкачать
Задача, которую боятсяСкачать
Видеоурок "Координатная плоскость, координата точки"Скачать
Алгебра 7 класс. 22 сентября. Координаты точек на координатной плоскостиСкачать
Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать
Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,Скачать
8 класс, 15 урок, Площадь трапецииСкачать
10 класс, 12 урок, Числовая окружность на координатной плоскостиСкачать