Под теплопередачей через стенку понимают процесс передачи теплоты между двумя средами через непроницаемую стенку любой геометрической формы в стационарном и нестационарном режимах теплообмена. Стенка может быть многослойной.
Рассмотрим стационарный режим теплопередачи через плоскую, цилиндрическую и сферическую стенки при котором теплопередача — величина постоянная и температурное поле не изменяется во времени и зависит только от координаты. В этом случае при условии постоянства теплофизических свойств тела температура в плоской стенке изменяется линейно, а в цилиндрической — по логарифмическому закону, т.е.
Q = const и T = f(x) — линейная (при плоской стенке) или логарифмическая функция (при круглой стенке).
Согласно второму закону термодинамики процесс теплопередачи идет от среды с большей температурой к среде с меньшей температурой.
Теплопередача через непроницаемую стенку включает в себя следующие процессы:
- теплоотдачу от горячей среды к стенке;
- теплопроводность внутри стенки;
- теплоотдачу от стенки к холодной среде.
- Теплопередача через плоскую стенку (граничные условия первого рода)
- Распределение температуры в плоской стенке
- Теплопроводность через многослойную стенку
- Теплопередача через плоскую стенку в граничащую среду (граничные условия третьего рода)
- Теплопроводность через цилиндрическую стенку (граничные условия первого рода)
- Тема 12.Теплопередача
- 12.1. Теплопередача через плоскую стенку
- Лекция 13. Теплопроводность при стационарном режиме. Плоская стенка. Термическое сопротивление. Коэффициент теплопередачи.
- 💥 Видео
Видео:Видео лекция.Теплопроводность через плоскую стенкуСкачать
Теплопередача через плоскую стенку (граничные условия первого рода)
Теплопроводность — первое элементарное тепловое явление переноса теплоты посредством теплового движения микрочастиц в сплошной среде, обусловленное неоднородным распределением температуры.
Совокупность значений температуры для всех точек пространства в данный момент времени называется температурным полем.
Если температурное поле не изменяется во времени, то мы имеем дело со стационарным тепловым режимом.
Тепловой поток Q [Вт] — это количество теплоты, передаваемой в единицу времени (1 Дж/с=1 Вт).
Поверхностная плотность теплового потока рассчитывается по формуле:
где Q — тепловой поток [Вт]; F — площадь стенки [м 2 ].
На основании закона Фурье q=-λdT/dx, значение плотности теплового потока для однослойной стенки будет определяться по формуле:
где δ = dx — толщина стенки, λ
λ/δ; [Вт/м 2 *К] — коэфициент тепловой проводности стенки.
а обратная величина —
R = δ/λ; [м 2. К/Вт] — термическое сопротивление стенки.
Для теплового потока формулу так же можно представить в виде:
Общее количество теплоты проходящее через площадь стены S за время t можно представить как:
Видео:Теплопередача через плоскую стенкуСкачать
Распределение температуры в плоской стенке
Рассмотрим изменение температуры в нашей стене. Так как у нас тепловой поток постоянный, то dT/dx = const=C1; T=C1х+С2 (1). Определим С1 и С2 через граничные условия.
При х=0 T=T1, подставим в уравнение (1) и получим T1=С2.
При х=δ T=T2, подставим в уравнение (1) и получим T2=С1*δ+С2, T2=С1*δ+T1, получим: С1=(Т2-T1)/δ. Теперь подставим в уравнение (1) найденные С1 и С2, получим следующее распределение температуры в нашей стене:
Если нам нужно узнать на какой глубине стены Т=То, то формула преобразуется в следующий вид:
Видео:Теплопроводность плоской стенкиСкачать
Теплопроводность через многослойную стенку
Если у нас есть стенка из нескольких (n) слоев с разными коэффициентами теплопроводности λi и разной толщиной δi.
Термическое сопротивление стенки считается так:
Для теплового потока формула будет иметь вид:
Температура на границе слоя вычисляется по следующей формуле:
Например, если нужно вычислить температуру между 3-м и 4-м слоем, формула будет такая:
Эквивалентная теплопроводность многослойной стенки:
Видео:Теплотехнический расчет стеныСкачать
Теплопередача через плоскую стенку в граничащую среду (граничные условия третьего рода)
Теплопередача — это более сложный процесс теплообмена между жидкими и газообразными средами, разделенными твердой стенкой. Теплопередача включает в себя и процесс теплопроводности, и процесс теплоотдачи.
Коэффициент теплоотдачи α, Вт/(м 2 ·К) — это количество теплоты, отдаваемое в единицу времени единицей поверхности при разности температур между поверхностью и окружающей средой, равной одному градусу.
Коэффициент теплопередачи k, Вт/(м 2 ·К), характеризует тепловой поток, проходящий через единицу площади поверхности стенки при разности температуры сред, равной одному градусу:
q = k * (Tвозд.внутри — Tвозд.снаружи); Вт/м 2
Коэффициент теплопередачи для n слойной стенки:
Термические сопротивления теплоотдаче на внешних поверхностях стенки будут равны:
Тогда общее термическое сопротивление теплопередаче будет равно:
Температуры на поверхности стенки можно определить по формулам:
Видео:Передача тепла теплопроводностьюСкачать
Теплопроводность через цилиндрическую стенку (граничные условия первого рода)
Теплообменные аппараты в большинстве случаев имеют не плоские, а цилиндрические поверхности, например рекуператоры типа «труба в трубе», кожухотрубные водонагреватели и т.д. Поэтому возникает необходимость рассмотрения основных принципов расчета цилиндрических поверхностей.
Согласно закону Фурье, количество теплоты, проходящее в единицу времени через этот слой, равно:
Подставим значения граничные значение и вспомним, что разность логарифмов равна логарифму отношению аргументов, получим:
Распределение температур внутри однородной цилиндрической стенки подчиняется логарифмическому закону, и уравнение температурной кривой имеет вид:
Количество теплоты, проходящее через стенку трубы, может быть отнесено либо к единице длины трубы L, либо к единице внутренней F1 или внешней F2 поверхности трубы. При этом расчетные формулы принимают следующий вид:
Все материалы, представленные на сайте, носят исключительно справочный и ознакомительный характер и не могут считаться прямой инструкцией к применению. Каждая ситуация является индивидуальной и требует своих расчетов, после которых нужно выбирать нужные технологии.
Не принимайте необдуманных решений. Имейте ввиду, что то что сработало у других, в ваших условиях может не сработать.
Администрация сайта и авторы статей не несут ответственности за любые убытки и последствия, которые могут возникнуть при использовании материалов сайта.
Сайт может содержать контент, запрещенный для просмотра лицам до 18 лет.
Видео:Тепловая задача - Многослойная плоская стенкаСкачать
Тема 12.Теплопередача
Видео:Интуитивное понимание формулы теплопроводности (часть 11) | Термодинамика | ФизикаСкачать
12.1. Теплопередача через плоскую стенку
Теплопередачей называется передача теплоты от горячего теплоносителя к холодному теплоносителю через стенку, разделяющую эти теплоносители.
Примерами теплопередачи являются: передача теплоты от греющей воды нагревательных элементов (отопительных систем) к воздуху помещения; передача теплоты от дымовых газов к воде через стенки кипятильных труб в паровых котлах; передача теплоты от раскаленных газов к охлаждающей воде (жидкости) через стенку цилиндра двигателя внутреннего сгорания; передача теплоты от внутреннего воздуха помещения к наружному воздуху и т. д. При этом ограждающая стенка является проводником теплоты, через которую теплота передается теплопроводностью, а от стенки к окружающей среде конвекцией и излучением. Поэтому процесс теплопередачи является сложным процессом теплообмена.
При передаче теплоты от стенки к окружающей среде в основном преобладает конвективный теплообмен, поэтому будут рассматриваться такие задачи.
1). Теплопередача через плоскую стенку.
Рассмотрим однослойную плоскую стенку толщиной d и теплопроводностью l (рис12.1).
Температура горячей жидкости (среды) t ‘ ж, холодной жидкости (среды) t » ж.
Количество теплоты, переданной от горячей жидкости (среды) к стенке по закону Ньютона-Рихмана имеет вид:
где a 1 – коэффициент теплоотдачи от горячей среды с температурой t ‘ ж к поверхности стенки• с температурой t1;
F – расчетная поверхность плоской стенки.
Тепловой поток, переданный через стенку определяется по уравнению:
Тепловой поток от второй поверхности стенки к холодной среде определяется по формуле:
где a 2 – коэффициент теплоотдачи от второй поверхности стенки к холодной среде с температурой t » ж.
Решая эти три уравнения получаем:
где К = 1 / (1/ a 1 + / l + 1/ a 2) – коэффициент теплопередачи, (12.5)
R0 = 1/К = (1/ a 1 + d / l + 1/ a 2) – полное термическое сопротивление теплопередачи через однослойную плоскую стенку. (12.6)
1/ a 1, 1/ a 2 – термические сопротивления теплоотдачи поверхностей стенки;
d / l — термическое сопротивление стенки.
Для многослойной плоской стенки полное термическое сопротивление будет определяться по следующей формуле:
Видео:Теплоотдача и теплопередача.Скачать
Лекция 13. Теплопроводность при стационарном режиме. Плоская стенка. Термическое сопротивление. Коэффициент теплопередачи.
Теплопроводность —один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При Т. перенос энергии в теле осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей энергией.
Стационарный режим— режим функционирования системы, который устанавливается с течением времени, в дальнейшем его характеристики остаются неизменными.
Если температура тела функция только координат и не изменяется с течением времени, то температурное поле называется стационарным: t = f(x,y,z) , ∂t/∂i= 0
1).Однородная плоская стенка (Рис.13.1)
Рис.13.1 Однородная плоская стенка
Температуры поверхностей стенки –tст1 и tст2.Плотность теплового потока:
Если R =δ/λ -термическое сопротивление теплопроводности стенки [(м 2 ∙К)/Вт], то плотность теплового потока:
Общее количество теплоты, которое передается через поверхность F за время τ определяется:
Температура тела в точке с координатой х находится по формуле:
2).Многослойная плоская стенка.
Рассмотрим 3-х слойную стенку (Рис.13.2). Температура наружных поверхностей стенокtст1и tст2, коэффициенты теплопроводностислоевλ1, λ2, λ3, толщина слоевδ1, δ2, δ3.
Рис.13.2 Многослойная плоская стенка
Плотности тепловых потоков через каждый слой стенки:
Решая эти уравнения, относительно разности температур и складывая, получаем:
где: Ro= (δ1/λ1+ δ2/λ2 + δ3/λ3) – общее термическое сопротивление теплопроводности многослойной стенки. Температура слоев определяется по следующим формулам:
💥 Видео
Техническая механика/ Определение равнодействующей. Плоская система сходящихся сил.Скачать
Теплопроводность цилиндрической стенкиСкачать
Определение времени охлаждения бака с жидкостьюСкачать
Решение задач на термохимические уравнения. 8 класс.Скачать
6-1. Уравнение теплопроводностиСкачать
Лекция 4. Теплотехнический расчет ограждающих конструкцийСкачать
ТМО практика 2Скачать
ЕГЭ физика. Уравнение теплового баланса (термодинамика)Скачать
Гидростатическое давлениеСкачать
Тепловая задача - Контактное термическое сопротивлениеСкачать
Учебный фильм - ТеплообменСкачать
Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать