Уравнение теплопередачи физический смысл коэффициента теплопередачи

Физический смысл коэффициента теплоотдачи

коэффициент пропорциональности Уравнение теплопередачи физический смысл коэффициента теплопередачи

, называемый коэффициентом теплопередачи, характеризует интенсивность процесса передачи тепла. В свою очередь

Уравнение теплопередачи физический смысл коэффициента теплопередачи

Из уравнения видно, что коэффициент теплопередачи тесно связан с величинами коэффициентов теплоотдачи и термическим сопротивлением стенки. Конкретно, чем больше Уравнение теплопередачи физический смысл коэффициента теплопередачи, и коэффициент теплопроводности материала стенки Уравнение теплопередачи физический смысл коэффициента теплопередачи, тем больше величина Уравнение теплопередачи физический смысл коэффициента теплопередачии тем больше количество передаваемого тепла. Физический смысл коэффициента теплопередачи следующий: Уравнение теплопередачи физический смысл коэффициента теплопередачичисленно равен количеству тепла, которое передается от одной жидкости к другой через стенку площадью 1 Уравнение теплопередачи физический смысл коэффициента теплопередачипри разности температур между теплоносителями в 1 К, за время 1 с. Поэтому единицей измерения Уравнение теплопередачи физический смысл коэффициента теплопередачиявляется Уравнение теплопередачи физический смысл коэффициента теплопередачиили Уравнение теплопередачи физический смысл коэффициента теплопередачи. Величина разностей температур Уравнение теплопередачи физический смысл коэффициента теплопередачиявляется движущей силой процессов теплопередачи или температурным напором. Следует отметить, что обычно в инженерной практике при тепловом расчете и проектировании теплообменной аппаратуры величины коэффициентов теплоотдачи по постановке задачи неизвестны. Поэтому, определение коэффициентов теплоотдачи Уравнение теплопередачи физический смысл коэффициента теплопередачиявляется одной из основных задач теории теплообмена. Знание коэффициентов теплоотдачи как при расчетах процесса теплоотдачи, так и при расчетах процесса теплопередачи, поскольку величины входят в коэффициент теплопередачи.

37. Теплопередача. Теплопередача (теплообмен) — это процесс обмена энергией между системой и окружающими ее телами; при этом нет изменения внешних параметров состояния системы (P, V, T). Теплопередача осуществляется либо путем непосредственного взаимодействия частиц системы с частицами среды при их случайных столкновениях (теплопроводность, конвекция), либо путем обмена электромагнитным излучением (лучеиспускание). Например, при столкновении «холодного» и «горячего» газов молекулы нагретого газа передают энергию (при случайных столкновениях) молекулам холодного газа. Вода в море в дневное время прогревается (получает энергию) за счет излучения, посылаемого Солнцем. Энергия, полученная или отданная системой в процессе теплопередачи, называется количеством тепла. Количество тепла Q измеряется в Джоулях (Дж) и является величиной скалярной. Q > 0 (положительная величина), если система получает тепло; Q

Уравнение теплопередачи физический смысл коэффициента теплопередачи, (2.3)

где k и Δt – коэффициент теплопередачи, Вт/( м 2 ∙K) и средний температурный напор для всего теплообменного аппарата, К;

Основные уравнение теплообмена

Основы теории передачи тепла. Классификация теплообменных аппаратов. Конструкции.

Видео:Теплопроводность, конвекция, излучение. 8 класс.Скачать

Теплопроводность, конвекция, излучение. 8 класс.

Основные понятия

Перенос энергии в форме тепла, происходящий между телами, имеющими различную температуру, называется теплообменом. Движущая сила любого процесса теплообмена — разность температур более и менее нагретого тел. При наличии такой разности тепло самопроизвольно, в соответствии со вторым законом термодинамики, переходит от более нагретого к менее нагретому телу. Теплообмен представляет собой обмен энергией между молекулами, атомами и свободными электронами.

Тела, участвующие в тпелообмене, называются теплоносителями.

Теплопередача — наука о процессах распространения тепла. Различают три элементарных способа передачи тепла.

1) Теплопроводность — перенос тепла вследствие теплового движения микрочастиц, непосредственно соприкасающихся друг с другом. В твердых телах теплопроводность — основной способ распространения тепла.

2) Конвекция — перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости. Различают свободную (естественную) конвекцию, обусловленную разностью плотностей в различных точках объема жидкости или газа за счет разности температур, и вынужденную конвекцию, происходящую при принудительном движении всего объема.

3) Тепловое излучение — распространение электромагнитных колебаний с различной длиной волн, обусловленный тепловым движением атомов или молекул излучающего тела. Все тела способны излучать и поглощать энергию, таким образом осуществляется лучистый теплообмен.

Видео:Интуитивное понимание формулы теплопроводности (часть 11) | Термодинамика | ФизикаСкачать

Интуитивное понимание формулы теплопроводности (часть 11) | Термодинамика | Физика

В реальных условиях тепло передается комбинированным путем.

Перенос тепла от стенки к газообразной или жидкой среде или в обратном направлении называется теплоотдачей. Процесс передачи тепла от более нагретой к менее нагретой жидкости или газу через разделяющую их поверхность или твердую стенку называется теплопередачей.

Расчет теплообменной аппаратуры включает:

1) Определение теплового потока — количества тепла Q, которое должно быть передано за определенное время от одного теплоносителя к другому. Тепловой поток вычисляется путем составления и решения тепловых балансов.

2) Определение поверхности теплообмена F аппарата, обеспечивающей передачу требуемого количества тепла в заданное время. Величина поверхности теплообмена определяется скоростью теплопередачи, зависящей от механизмов передачи тепла и их сочетанием друг с другом. Поверхность теплообмена находят из основного уравнения теплопередачи.

Основные уравнение теплообмена

Основное уравнение теплопередачи выражает общую зависимость для процессов теплопередачи, выражающее связь между тепловым потоком Q’ и поверхностью теплообмена F:

Видео:Теплопередача. Виды теплопередачи | Физика 8 класс #2 | ИнфоурокСкачать

Теплопередача. Виды теплопередачи | Физика 8 класс #2 | Инфоурок

K — коэффициент теплопередачи, определяющий среднюю скорость передачи тепла вдоль всей поверхности теплообмена; Dtср — средняя разность температур между теплоносителями, определяющая среднюю движущую силу процесса теплопередчи, или температурный напор; t — время.

Физический смысл уравнения: количество тепла, передаваемое от более нагретого к менее нагретому теплоносителю, пропорционально поверхности теплообмена F, среднему температурному напору Dtср и времени t.

Для непрерывных процессов теплообмена:

Отсюда коэффициент теплопередачи:

Уравнение теплопередачи физический смысл коэффициента теплопередачи

Коэффициент теплопередачи показывает, какое количество тепла (в Дж) переходит за 1 секунду от более нагретого к менее нагретому теплоносителю через поверхность теплообмена 1 м 3 при средней разности температур между теплоносителями 1 градус.

В основе расчета теплопроводности лежит закон Фурье:

Уравнение теплопередачи физический смысл коэффициента теплопередачи

То есть, количество тепла dQ, передаваемое посредством теплопроводности через элемент поверхности dF, перпендикулярный тепловому потоку, за время dt прямо порпорционально температурному градиенту ∂t/∂n поверхности dF и времени dt.

Видео:Урок 177. Задачи на теплопередачуСкачать

Урок 177. Задачи на теплопередачу

Количество тепла, передаваемое через единицу поверхности в единицу времени:

Уравнение теплопередачи физический смысл коэффициента теплопередачи

Здесь q — плотность теплового потока. Знак минус указывает на то, что тепло перемещается в сторону падения температуры.

Количество переданного тепла:

Уравнение теплопередачи физический смысл коэффициента теплопередачи

Уравнение теплопередачи физический смысл коэффициента теплопередачи

Здесь d — толщина стенки, м; tст1 – tст2 — разность температур поверхностей стенки, град; F — площадь поверхности стенки, м 2 ;  — время, с.

Для непрерывного процесса передачи тепла теплопроводностью при =1:

Уравнение теплопередачи физический смысл коэффициента теплопередачи

Коэффициент пропорциональности l называется коэффициентом теплопроводности.

Уравнение теплопередачи физический смысл коэффициента теплопередачи

Коэффициент теплопроводности l показывает, какое количество тепла проходит вследствие теплопроводности в единицу времени через единицу поверхности теплообмена при падении температуры на 1 градус на единицу длины нормали к изотермической поверхности. Его величина зависит от природы вещества, его структуры, температуры и некоторых других факторов.

Видео:3 вида Теплопередачи, которые Нужно ЗнатьСкачать

3 вида Теплопередачи, которые Нужно Знать

При обычных температурах и давлениях лучшими проводниками тепла являются металлы, худшими — газы.

В основе расчета теплоотдачи лежит закон охлаждения Ньютона:

Уравнение теплопередачи физический смысл коэффициента теплопередачи

То есть: количество тепла dQ, отдаваемое за время dt поверхностью стенки dF, имеющей температуур tст, к жидкости с температурой tж, прямо пропорционально dF и разности температур tст – tж.

Применительно к поверхности теплообмена всего аппарата F для непрерывного процесса теплоотдачи это уравнение принимает вид:

Коэффициент пропорциональности a называется коэффициентом теплоотдачи. Величина его характеризует интенсивность переноса тепла между поверхностью тела и окружающей средой. Он выражается следующим образом:

Уравнение теплопередачи физический смысл коэффициента теплопередачи

То есть, коэффициент теплоотдачи a показывает, какое количество тепла передается от 1 м 2 поверхности стенки к жидкости (или наоборот) в течение 1 секунды при разности температур между стенкой и жидкостью 1 градус.

Вследствие сложной структуры потоков, особенно в условиях турбулентного движения, величина a является сложной функцией многих переменных. Коэффициент теплоотдачи зависит от: — скорости жидкости, ее плотности и вязкости, — тепловых свойств жидкости (удельная теплоемкость, теплопроводность) и коэффициента объемного расширения, — геометрических параметров — формы и определяющих размеров стенки (для труб – от размера и диаметра) и шероховатости стенки.

Видео:ТеплопроводностьСкачать

Теплопроводность

При сопоставлении уравнений теплопроводности и теплоотдачи получаем следующее выражение для установившегося процесса теплообмена:

Уравнение теплопередачи физический смысл коэффициента теплопередачи

После преобразований получим:

Nu — критерий Нуссельта. Равенство критериев Нуссельта характеризует подобие процессов теплопереноса на границе между стенкой и потоком жидкости. Он является мерой соотношения толщины пограничного слоя d и определяющего геометрического размера.

💥 Видео

Физика 8 класс (Урок№2 - Теплопроводность, конвекция, излучение)Скачать

Физика 8 класс (Урок№2 - Теплопроводность, конвекция, излучение)

Урок 106 (осн). Виды теплопередачи (часть 1)Скачать

Урок 106 (осн). Виды теплопередачи (часть 1)

Количество теплоты, удельная теплоемкость вещества. 8 класс.Скачать

Количество теплоты, удельная теплоемкость вещества. 8 класс.

Теплоотдача и теплопередача.Скачать

Теплоотдача и теплопередача.

Урок 107 (осн). Виды теплопередачи (часть 2)Скачать

Урок 107 (осн). Виды теплопередачи (часть 2)

Закон и уравнение теплопроводностиСкачать

Закон и уравнение теплопроводности

Лекция №1.1 Явная и неявная схемы для уравнения теплопроводностиСкачать

Лекция №1.1 Явная и неявная схемы для уравнения теплопроводности

8.1 Решение уравнения теплопроводности на отрезкеСкачать

8.1 Решение уравнения теплопроводности на отрезке

Адиабатный процесс. 10 класс.Скачать

Адиабатный процесс. 10 класс.

Количество теплоты, удельная теплоемкость вещества. Практическая часть - решение задачи. 8 класс.Скачать

Количество теплоты, удельная теплоемкость вещества. Практическая часть - решение задачи. 8 класс.

Задача на Тепловой обмен. физика 8 классСкачать

Задача на Тепловой обмен. физика 8 класс

Урок 109 (осн). Задачи на вычисление количества теплотыСкачать

Урок 109 (осн). Задачи на вычисление количества теплоты

Горицкий А. Ю. - Уравнения математической физики. Часть 2 - Уравнение теплопроводностиСкачать

Горицкий А. Ю. - Уравнения математической физики. Часть 2 - Уравнение теплопроводности

Урок 100 (осн). Коэффициенты линейного и объемного расширения телСкачать

Урок 100 (осн). Коэффициенты линейного и объемного расширения тел
Поделиться или сохранить к себе: