Уравнение тангенс х равно а

Математика. Уравнения tg х = а и ctg х = а . Примеры.

Уравнение тангенс х равно а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале только один корень. Если , то корень заключён в промежутке ; если а Просмотр содержимого документа
«Математика. Уравнения tg х = а и ctg х = а . Примеры.»

Видео:10 класс. Решение уравнений tg x =aСкачать

10 класс. Решение уравнений tg x =a

Уравнение. Простейшие тригонометрические уравнения tg х = а и ctg х = а.

Любые корни уравнения tg x = a если х указан в радианах находим из соотношения:

или для х в градусах:

где m изменяется по всем целым числам (m = 0, ± 1, ±2, ±3).

Сходным образом все корни уравнения ctg х = а находим из соотношения:

Проанализируем решение простейших тригонометрических уравнений.

1) Найти корни уравнения tg (30° — х) = Уравнение тангенс х равно а.

Применив формулу х = arctg а + 180° m, получим:

30° — х = arctg Уравнение тангенс х равно а + 180° m = 60° + 180° m.

что можно показать, и таким образом:

Применив формулу х = arcctg a + mπ, получим:

2х = π + mπ = (1 + m)π,

Поскольку m может быть любым произвольным целым числом, то полученный результат можно показать и в более упрошенном виде:

Видео:Решение уравнений вида tg x = a и ctg x = aСкачать

Решение уравнений вида tg x = a и ctg x = a

Простейшие тригонометрические уравнения с тангенсом и котангенсом

Чтобы уверенно решать простейшие уравнения с тангенсом или котангенсом нужно знать значения стандартных точек на круге и стандартные значения на осях тангенсов и котангенсов (если в этом материале есть пробелы, читайте « Как запомнить тригонометрический круг »).

Видео:Алгебра 10 класс (Урок№43 - Уравнение tg x=a.)Скачать

Алгебра 10 класс (Урок№43 - Уравнение tg x=a.)

Алгоритм решения простейших уравнений с тангенсом

Давайте с вами рассмотрим типичное уравнение, например, (tg⁡x=sqrt).

Пример. Решить уравнение (tg⁡x=sqrt).

Чего от нас здесь хотят? Чтобы мы написали все такие значения угла в Пи, для которых тангенс равен корню из трех. Причем написать надо именно все такие углы. Давайте нарисуем тригонометрический круг и ось тангенсов…

Уравнение тангенс х равно а

…и обозначим то место на оси, куда мы должны попасть в итоге.

Уравнение тангенс х равно а

Теперь найдем через какие точки на окружности мы должны идти, чтобы попасть в этот самый корень из трех –проведем прямую через начало координат и найденную точку на оси тангенсов.

Уравнение тангенс х равно а

Точки найдены. Давайте подпишем значение одной из них…

Уравнение тангенс х равно а

…и запишем окончательный ответ – все возможные варианты значений в Пи, находящиеся в отмеченных точках: (x=frac+πn), (n∈Z).

Уравнение тангенс х равно а

Замечание. Вы, наверно, обратили внимание, что в отличие от уравнений с синусом и косинусом , здесь записывается только одна серия корней, причем в формуле добавляется (πn), а не (2πn). Дело в том, что в любом уравнении с тангенсом решением получаются две точки на окружности, которые находятся друг от друга на расстоянии (π). Благодаря этому значение обеих точек можно записать одной формулой в виде (x=t_0+πn), (n∈Z).

Пример. Решить уравнение (tg⁡x=-1).

Уравнение тангенс х равно а

Итак, окончательный алгоритм решения подобных задач выглядит следующим образом:

Шаг 1. Построить окружность, оси синусов и косинусов, а также ось тангенсов.

Шаг 2. Отметить на оси тангенсов значение, которому тангенс должен быть равен.

Шаг 3. Соединить прямой линией центр окружности и отмеченную точку на оси тангенсов.

Шаг 4. Найти значение одной из точек на круге.

Шаг 5. Записать ответ используя формулу (x=t_0+πn), (n∈Z) (подробнее о формуле в видео), где (t_0) – как раз то значение, которые вы нашли в шаге 4.

Специально для вас мы сделали удобную табличку со всеми шагами алгоритма и разными примерами к нему. Пользуйтесь на здоровье! Можете даже распечатать и повесить на стенку, чтоб больше никогда не ошибаться в этих уравнениях.

Уравнение тангенс х равно а

Видео:Уравнение тангенс. Арктангенс. Видеоурок 30. Алгебра 10 классСкачать

Уравнение тангенс. Арктангенс. Видеоурок 30. Алгебра 10 класс

Алгоритм решения простейших уравнений с котангенсом

Сразу скажу, что алгоритм решения уравнений с котангенсом почти такой же, как и с тангенсом.

Шаг 1. Вопрос у нас практически тот же – из каких точек круга можно попасть в (frac<sqrt>) на оси котангенсов?
Строим круг, проводим нужные оси.

Уравнение тангенс х равно а

Теперь отмечаем на оси котангенсов значение, которому котангенс должен быть равен…

Уравнение тангенс х равно а

…и соединяем центр окружности и точку на оси котангенсов прямой линией.

Уравнение тангенс х равно а

По сути точки найдены. Осталось записать их все. Вновь определяем значение в одной из них…

Уравнение тангенс х равно а

…и записываем окончательный ответ по формуле (x=t_0+πn), (n∈Z), потому что у котангенса период такой же как у тангенса: (πn).

Уравнение тангенс х равно а

Кстати, вы обратили внимание, что ответы в задачах совпали? Здесь нет ошибки, ведь для любой точки круга, тангенс которой равен (sqrt), котангенс будет (frac<sqrt>).

Разберем еще пример, а потом подведем итог.

Пример. Решить уравнение (ctg⁡x=-1). Здесь подробно расписывать не буду, так как логика полностью аналогична вышеизложенной.

Уравнение тангенс х равно а

Итак, алгоритм решения простейших тригонометрических уравнений с котангенсом:

Шаг 1. Построить окружность и оси синусов и косинусов, а также ось котангенсов.

Шаг 2. Отметить на оси котангенсов значение, которому котангенс должен быть равен.

Шаг 3. Соединить центр окружности и точку на оси котангенсов прямой линией.

Шаг 4. Найти значение одной из точек на круге.

Шаг 5. Записать ответ используя формулу (x=t_0+πn), (n∈Z), где (t_0) – как раз то значение, которые вы нашли в шаге 4. И табличка в награду всем дочитавшим до этого места.

Уравнение тангенс х равно а

Примечание. Возможно, вы обратили внимание, что при решении примеров 2 и 3 в обеих табличках мы использовали функции (arctg) и (arcctg). Если вы не знаете, что это – читайте эту статью.

💥 Видео

Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать

Тригонометрические функции, y=tgx и y=ctgx,  их свойства и графики. 10 класс.

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение простейших тригонометрических уравнений tgx=a и ctgx=aСкачать

Решение простейших тригонометрических уравнений tgx=a и ctgx=a

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

§161 Уравнения вида tg x=aСкачать

§161 Уравнения вида tg x=a

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

§35 Уравнение tg x = aСкачать

§35 Уравнение tg x = a

Решение уравнений tgx=a и ctgx=a | Тригонометрия | Лекция 5.3Скачать

Решение уравнений tgx=a и ctgx=a | Тригонометрия | Лекция 5.3

10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графикиСкачать

10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графики

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Алгебра 10 класс (Урок№42 - Уравнение sin x = a.)Скачать

Алгебра 10 класс (Урок№42 - Уравнение sin x = a.)

Простая тригонометрия ★ Решите уравнение tg3x=11tgxСкачать

Простая тригонометрия ★ Решите уравнение tg3x=11tgx

Уравнение sinx=aСкачать

Уравнение sinx=a

Арктангенс и арккотангенс. Решение уравнений tgx=а, ctgx =a | Алгебра 10 класс #28 | ИнфоурокСкачать

Арктангенс и арккотангенс. Решение уравнений tgx=а, ctgx =a | Алгебра 10 класс #28 | Инфоурок

Уравнение tg x=aСкачать

Уравнение tg x=a

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.
Поделиться или сохранить к себе: