Уравнение сжигания метана в воздухе

Видео:29. Общая реакция горения для всех углеводородов. Как расставить коэффициенты реакции легкоСкачать

29. Общая реакция горения для всех углеводородов.  Как расставить коэффициенты реакции легко

Расчеты горения

Расчеты горения ведут по химическим уравнениям реакций, используя законы газового состояния: Бойля – Мариотта Уравнение сжигания метана в воздухе, Гей-Люссака Уравнение сжигания метана в воздухе, Шарля Уравнение сжигания метана в воздухеи Клапейрона – Менделеева Уравнение сжигания метана в воздухе. Используется также закон Авогадро, согласно которому один грамм-моль любого газа при нормальных условиях (Т = 273 К, Р = 760 мм рт. ст.) занимает одинаковый объём – 22,4 дм 3 . Соответственно один кг-моль – 22,4 м 3 .

Рассмотрим реакцию горения водорода в кислороде: Уравнение сжигания метана в воздухе. Из уравнения следует, что при нормальных условиях для полного сгорания 2 × 22,4 = 44,8 м 3 водорода требуется 22,4 м 3 кислорода. Обычно для простоты и удобства расчеты ведут на один кубометр сжигаемого газа, т.е. для сгорания 1 м 3 водорода требуется 0,5 м 3 кислорода.

Рассмотрим реакцию горения метана в кислороде: Уравнение сжигания метана в воздухе. Из уравнения следует, что для полного сгорания 22,4 м 3 метана требуется 2 × 22,4 = 44,8 м 3 кислорода. Следовательно, для сгорания 1 м 3 метана необходимо 2 м 3 кислорода.

В практических условиях сжигание газа осуществляется в воздухе. Примем состав сухого воздуха: О2 – 21 %, N2 – 79%. Следовательно, 1 м 3 кислорода содержится в 100/21 = 4,76 м 3 воздуха. Или на 1 м 3 кислорода приходится 3,76 м 3 азота. Отсюда условная формула воздуха: (О2 + 3,76N2).

Запишем реакцию горения водорода в воздухе:

Уравнение сжигания метана в воздухе.

Из уравнения следует, что при нормальных условиях для полного сгорания 1 м 3 водорода требуется 0,5 × 4,76 = 2,38 м 3 воздуха. Таким образом, для сгорания 1 м 3 водорода требуется 2,38 м 3 воздуха. В результате образуются продукты сгорания: 1 м 3 воды в виде пара и 1,88 м 3 азота.

Запишем реакцию горения метана в воздухе:

Уравнение сжигания метана в воздухе.

Из уравнения следует, что для полного сгорания 1 м 3 метана необходимо 2 × 4,76 = 9,52 м 3 воздуха. Таким образом, при нормальных условиях для сгорания 1 м 3 метана требуется 9,52 м 3 сухого воздуха. Продукты сгорания содержат 1 м 3 диоксида углерода, 2 м 3 паров воды и 7,52 м 3 азота.

Запишем реакцию горения пропана в воздухе:

Уравнение сжигания метана в воздухе.

Из уравнения видно, что для полного сгорания 1 м 3 пропана необходимо 5 × 4,76 = 23,8 м 3 воздуха. Таким образом, при нормальных условиях для сгорания 1 м 3 пропана требуется 23,8 м 3 сухого воздуха.

Приведенные расчеты выполнены для стехиометрических уравнений и полученные соотношения воздуха и газа называются стехиометрическими. Например, для горения метана в воздухе стехиометрическое соотношение – 9,52. В реальных условиях воздуха может не хватать для полного сгорания газа или, напротив, воздух подается в избыточном количестве. Для характеристики реальных соотношений воздуха и газа в процессе горения введена безразмерная величина: коэффициент избытка воздуха (окислителя) – коэффициент α. Для стехиометрического соотношения α = 1. Если имеет место недостаток воздуха, то α 1. Например, в процессе горения израсходовано 23 м 3 воздуха и 2 м 3 метана. Подсчитываем коэффициент α. Реальное соотношение воздуха и газа 23/2 = 11,5. Отсюда α = 11,5/9,52 = 1,2.

Выше показано, как можно подсчитывать необходимое количество воздуха для сгорания и определять объем продуктов сгорания для индивидуальных газов. Но обычно используемый газ – смесь различных газов. В этом случае расчет теоретически необходимого объема воздуха (воздуха сухого) ведется по формуле:

Уравнение сжигания метана в воздухенм 3 /нм 3 , (10.4)

где Уравнение сжигания метана в воздухе– соответственно объемное процентное содержание данных газов в исходной смеси.

Используемый для сжигания атмосферный воздух содержит влагу, поэтому расчет объема влажного воздуха производят по формуле:

Уравнение сжигания метана в воздухенм 3 /нм 3 , (10.5)

где Уравнение сжигания метана в воздухе– влагосодержание воздуха, г/нм 3 ;

0,00124 – объем 1 г водяного пара.

И, наконец, определяется объем воздуха действительный с учетом величины коэффициента α по формуле:

Уравнение сжигания метана в воздухе. (10.6)

Пример. Имеется газ состава СН4 – 95%, С3Н8 – 5%. Определить объем воздуха действительного для сжигания данного газа при α = 1,1 и Уравнение сжигания метана в воздухе= 10 г/м 3 .

Уравнение сжигания метана в воздухе, нм 3 /нм 3 ,

Уравнение сжигания метана в воздухе, нм 3 /нм 3 ,

Уравнение сжигания метана в воздухе, нм 3 /нм 3 .

Объем продуктов сгорания газовой смеси определяется по следующим формулам.

Объем диоксида углерода

Уравнение сжигания метана в воздухе, нм 3 /нм 3 . (10.7)

Объем водяных паров

Уравнение сжигания метана в воздухе, нм 3 /нм 3 . (10.8)

Уравнение сжигания метана в воздухе, нм 3 /нм 3 . (10.9)

где N2 – процентное содержание азота в газовой смеси.

Уравнение сжигания метана в воздухе, нм 3 /нм 3 . (10.10)

Суммарный объем продуктов сгорания

Уравнение сжигания метана в воздухе, нм 3 /нм 3 . (10.11)

Дата добавления: 2015-06-22 ; просмотров: 8141 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:Уравнивание реакций горения углеводородовСкачать

Уравнивание реакций горения углеводородов

Горение метана

Метан представляет собой газообразное химическое соединение с химической формулой CH4. Это самый простой представитель алканов. Другие названия этой группы органических соединений: предельные, насыщенные или парафиновые углеводороды. Они характеризуются наличием простой связи между атомами углерода в молекуле, а все остальные валентности каждого углеродного атома насыщены атомами водорода. Для алканов наиболее важной реакцией является горение. Они горят с образованием газообразной двуокиси углерода и паров воды. В результате выделяется огромное количество химической энергии, которая превращается в тепловую или электрическую. Метан является горючим веществом и основным компонентом природного газа, что и делает его привлекательным топливом. В основе широкого использования природного ископаемого лежит реакция горения метана. Поскольку он в нормальных условиях является газом, то его трудно транспортировать на далекие расстояния от источника, поэтому часто его предварительно сжижают.

Процесс горения заключается в реакции между метаном и кислородом, то есть в окислении простейшего алкана. В результате образуется двуокись углерода, вода и много энергии. Горение метана может быть описано уравнением: CH4 [газ] + 2O2 [газ] → CO2 [газ] + 2H2O [пар] + 891 кДж. То есть одна молекула метана при взаимодействии с двумя молекулами кислорода образует молекулу двуокиси углерода и две молекулы воды. При этом выделяется тепловая энергия, равная 891 кДж. Природный газ является самым чистым для сжигания ископаемым, так как уголь, нефть и другие виды топлива более сложные по составу. Поэтому при сгорании они выделяют в воздух различные вредные химические вещества. Поскольку природный газ в основном состоит из метана (примерно на 95%), то при его сжигании практически не образуются побочные продукты или их получается намного меньше, чем в случае с другими видами ископаемого топлива.

Теплотворная способность метана (55,7 кДж/г) выше, чем его гомологов, например, этана (51,9 кДж/г), пропана (50,35 кДж/г), бутана (49,50 кДж/г) или других видов топлива (древесина, уголь, керосин). Горение метана дает больше энергии. Для обеспечения в течение года работы лампочки накаливания мощностью 100 Вт необходимо сжечь 260 кг древесины, или 120 кг угля, или 73,3 кг керосина, или всего 58 кг метана, что соответствует 78,8 м³ природного газа.

Простейший алкан является важным ресурсом для получения электроэнергии. Происходит это за счет сжигания его в качестве топлива котла, вырабатывающего пар, который приводит в движение паровую турбину. Также горение метана используется для получения горячих дымовых газов, энергия которых обеспечивает работу газовой турбины (сжигание осуществляется до турбины или в самой турбине). Во многих городах метан подается по трубам в дома для внутреннего отопления и приготовления пищи. По сравнению с другими видами углеводородного топлива сжигание природного газа характеризуется меньшим выделением углекислого газа и большим количеством полученного тепла.

Горение метана используется для достижения высоких температур в печах различных химических производств, например, крупнотоннажных этиленовых установок. Природный газ в смеси с воздухом подается в горелки печей пиролиза. В процессе сгорания образуются дымовые газы с высокой температурой (700—900 °С). Они нагревают трубы (находятся внутри печи), в которые подается смесь сырья с водяным паром (для снижения образования кокса в трубах печей). Под действием высоких температур происходит множество химических реакций, в результате которых получают целевые компоненты (этилен и пропилен) и побочные продукты (смола пиролизная тяжелая, водородная и метановая фракции, этан, пропан, углеводороды С4, С5, пироконденсат; каждый из них имеет свое применение, например, пироконденсат используют для получения бензола или компонентов автомобильного бензина).

Горение метана является сложным физико-химическим явлением на основе экзотермической окислительно-восстановительной реакции, характеризующейся высокой скоростью течения и выделением огромного количества тепла, а также теплообменными и массообмеными процессами. Поэтому расчетное определение температуры горения смеси представляет собой сложную задачу, так как кроме состава горючей смеси сильно влияют ее давление и начальная температура. С их увеличением наблюдается рост температуры горения, а теплообменные и массообменые процессы способствуют ее снижению. Температура горения метана при проектировании процессов и аппаратов химических производств определяется расчетным методом, а на действующих установках (например, в печах пиролиза) ее измеряют с помощью термопар.

Видео:Горение метанаСкачать

Горение метана

Метан: способы получения и свойства

Метан CH4 – это предельный углеводород, содержащий один атом углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, легче воды, нерастворим в воде и не смешивается с ней.

Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Гомологический ряд метана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4, или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Видео:Взрыв смеси метана с кислородомСкачать

Взрыв смеси метана с кислородом

Строение метана

В молекуле метана встречаются связи C–H. Связь C–H ковалентная слабополярная. Это одинарная σ-связь. Атом углерода в метане образует четыре σ-связи. Следовательно, гибридизация атома углерода в молекуле метана– sp 3 :

Уравнение сжигания метана в воздухе

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Уравнение сжигания метана в воздухе

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Уравнение сжигания метана в воздухе

Это соответствует тетраэдрическому строению молекулы.

Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода

Уравнение сжигания метана в воздухе

Уравнение сжигания метана в воздухе

Уравнение сжигания метана в воздухе

Видео:Получение метана и его горениеСкачать

Получение метана и его горение

Изомерия метана

Для метана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Видео:Горение. 7 класс.Скачать

Горение. 7 класс.

Химические свойства метана

Метан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для метана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для метана характерны только радикальные реакции.

Метан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

Видео:Составление уравнений реакций горения. 11 класс.Скачать

Составление уравнений реакций горения. 11 класс.

1. Реакции замещения

Для метана характерны реакции радикального замещение.

1.1. Галогенирование

Метан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании метана сначала образуется хлорметан:

Уравнение сжигания метана в воздухе

Хлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:

Уравнение сжигания метана в воздухе

Химическая активность хлора выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.

Бромирование протекает более медленно.

Реакции замещения в алканах протекают по свободнорадикальному механизму.

Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.

Первая стадия. Инициирование цепи.

Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:

Уравнение сжигания метана в воздухе

Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Вторая стадия. Развитие цепи.

Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.

При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:

Уравнение сжигания метана в воздухе

Третья стадия. Обрыв цепи.

При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.

Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:

Уравнение сжигания метана в воздухе

1.2. Нитрование метана

Метан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140 о С и под давлением. Атом водорода в метане замещается на нитрогруппу NO2.

Например. При нитровании метана образуется преимущественно нитрометан:

Видео:Горение метана в кислородеСкачать

Горение метана в кислороде

2. Реакции разложения метана (д егидрирование, пиролиз)

При медленном и длительном нагревании до 1500 о С метан разлагается до простых веществ:

Уравнение сжигания метана в воздухе

Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:Уравнение сжигания метана в воздухе

Пиролиз метана – промышленный способ получения ацетилена.

Видео:горение железа в кислородеСкачать

горение железа в кислороде

3. Окисление метана

Алканы – малополярные соединения, поэтому при обычных условиях они не окисляются даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Алканы горят с образованием углекислого газа и воды. Реакция горения алканов сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении алканов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Промышленное значение имеет реакция окисления метана кислородом до простого вещества – углерода:

Эта реакция используется для получения сажи.

3.2. Каталитическое окисление

  • При каталитическом окислении метана кислородом возможно образование различных продуктов в зависимости от условий проведения процесса и катализатора. Возможно образование метанола, муравьиного альдегида или муравьиной кислоты:

Уравнение сжигания метана в воздухе

  • Важное значение в промышленности имеет паровая конверсия метана: окисление метана водяным паром при высокой температуре.

Уравнение сжигания метана в воздухе

Продукт реакции – так называемый «синтез-газ».

Видео:Горение метанаСкачать

Горение метана

Получение метана

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета. Реакция больше подходит для получения симметричных алканов. Получить таким образом метан нельзя.

Видео:ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и Получение

2. Водный или кислотный гидролиз карбида алюминия

Этот способ получения используется в лаборатории для получения метана.

Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

3. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии ацетата натрия с гидроксидом натрия при сплавлении образуется метан и карбонат натрия:

Уравнение сжигания метана в воздухе

Видео:ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ: Химическое Количество Вещества, Моль, Молярная Масса и Молярный ОбъемСкачать

ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ: Химическое Количество Вещества, Моль, Молярная Масса и Молярный Объем

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Синтезом Фишера-Тропша можно получить метан:

Видео:Химия. 11 класс. Алканы. Горение метана, этилена, ацетилена /16.09.2020/Скачать

Химия. 11 класс. Алканы. Горение метана, этилена, ацетилена /16.09.2020/

5. Получение метана в промышленности

В промышленности метан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

🔍 Видео

Химия 8 класс (Урок№11 - Кислород: получение, физические и химические свойства,применение. Оксиды.)Скачать

Химия 8 класс (Урок№11 - Кислород: получение, физические и химические свойства,применение. Оксиды.)

Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакцийСкачать

Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакций

Химические свойства алканов | Химия ЕГЭ для 10 класса | УмскулСкачать

Химические свойства алканов | Химия ЕГЭ для 10 класса | Умскул

Физика: горение и взрывСкачать

Физика: горение и взрыв
Поделиться или сохранить к себе: