Уравнение сторон трапеции по координатам

записать уравнение сторон трапеции с вершинами а( -2,2) b( -1,2) c(3,4) d(6,2) высшая математика

С высшей математикой тут явно перебор.
Это четыре прямые проходящие через соответствующие соседние вершины и имеющие область определения ограниченную координатой Х точек вершин. Попробуй сама их вывести. Это не сложно, если вспомнить уравнение прямой на плоскости проходящей через две заданные точки.

Чего-то вы напутали с координатами. Вот что получилось при построении (смотрите картинку). На трапецию никак не тянет.

Видео:№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение

Уравнение средней линии

Как составить уравнение средней линии треугольника по координатам его вершин? Как записать уравнение средней линии трапеции?

Для решения этих задач используем свойства средней линии треугольника и средней линии трапеции.

Найти координаты середин двух сторон и составить уравнение прямой, проходящей через две найденные точки.

1) Написать уравнение прямой, содержащей среднюю линию треугольника с вершинами в точках A(-2;-4), B(1;6), C(7;0), пересекающей стороны AB и BC в точках M и N.

М — середина отрезка AB, N — середина BC.

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Составим уравнение прямой MN, например, в виде y=kx+b:

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Найти координату одной из точек средней линии и составить уравнение прямой, параллельной стороне треугольника.

Уравнение сторон трапеции по координатам

— середина отрезка AB. Составим уравнение прямой AC:

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Составим уравнение прямой MN как уравнение прямой, проходящей через точку M и параллельной прямой AC.

Угловой коэффициент прямой MN равен угловому коэффициенту прямой AC:

Уравнение сторон трапеции по координатам

то есть уравнение прямой MN ищем в виде

Уравнение сторон трапеции по координатам

Поскольку точка M принадлежит прямой, её координаты удовлетворяют этому уравнению. Отсюда находим значение b:

Уравнение сторон трапеции по координатам

Таким образом, уравнение прямой MN

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Аналогичные рассуждения применимы и при составлении уравнения средней линии трапеции.

Написать уравнение прямой, содержащей среднюю линию трапеции с вершинами в точках A(-2;1), B(1;5), C(4;-1), D(0;-3).

Сначала следует определить основания данной трапеции.

Составим уравнения сторон AD и BC. Если эти прямые параллельны, то AD и BC — основания трапеции. Если эти прямые не параллельны, то основания трапеции — AB и CD.

Уравнение сторон трапеции по координатам

Значит, уравнение прямой AD: y= -2k-3.
B(1;5), C(4;-1),

Уравнение сторон трапеции по координатам

Уравнение прямой BC: y= -2k+7.

Поскольку угловые коэффициенты прямых равны:

Уравнение сторон трапеции по координатам

то AD ∥BC, то есть AD и BC являются основаниями трапеции ABCD. Значит AB и CD — боковые стороны. Найдём координаты точек M и N — середины AB и CD соответственно.

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Уравнение сторон трапеции по координатам

Составим уравнение прямой MN, M(-1/2;3), N(2;-2):

Уравнение сторон трапеции по координатам

Уравнение AD — y= -2k-3, середина AB — M(-1/2;3). Составляем уравнение прямой MN, параллельной прямой AD.

Уравнение сторон трапеции по координатам

Значит уравнение MN ищем в виде y= -2x+b.

Так как прямая проходит через точку M, её координаты удовлетворяют уравнению прямой:

Уравнение сторон трапеции по координатам

Следовательно, уравнение средней линии трапеции ABCD имеет вид y=-2x+2 или 2x+y-2=0.

Видео:№974. Даны координаты вершин трапеции ABCD: А (-2; -2), В (-3; 1). Напишите уравненияСкачать

№974. Даны координаты вершин трапеции ABCD: А (-2; -2), В (-3; 1). Напишите уравнения

Стороны трапеции

Уравнение сторон трапеции по координатам

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Свойства

Трапеция является фигурой с двумя параллельными противоположными сторонами, при этом все четыре стороны могут быть разной длины. Параллельные стороны b и d называются меньшим и большим основанием трапеции, a и c – боковыми сторонами. Зная стороны трапеции, можно найти все характеризующие ее параметры. Периметр трапеции, зная стороны, представляет собой их сумму. P=a+b+c+d

Высота трапеции является перпендикуляром, соединяющим два основания, и может быть проведена в любой их точке, но удобнее всего это делать из вершины углов при меньшем основании, так как тогда образуется прямоугольный треугольник, из которого выводится формула. (рис.103.1) h=√(a^2-(((d-b)^2+a^2-c^2)/2(d-b) )^2 )

Средней линией трапеции называется отрезок, соединяющий середины боковых сторон, и равный полусумме оснований. (рис.103.2) m=(b+d)/2

Площадь трапеции равна произведению ее высоты на среднюю линию. Чтобы найти площадь трапеции через стороны, необходимо развернуть эту формулу до ее истоков, заменив неизвестные переменные. S=hm=√(a^2-(((d-b)^2+a^2-c^2)/2(d-b) )^2 )*(b+d)/2

Если в трапецию можно вписать окружность (а это возможно, если противоположные стороны в сумме дают одно и то же число), то радиус вписанной окружности будет равен половине высоты, или половине квадратного корня из произведения меньшего основания на большее, с учетом условия для окружности. (рис.103.3) r=h/2=√bd/2

Описать окружность можно только вокруг равнобокой трапеции, и если она является таковой, то радиус описанной окружности будет равен радиусу окружности, описанной вокруг треугольника, образованного диагональю. (рис.103.4) R=(abd_1)/√((a+b+d_1)(a+b)(a+d_1)(b+d_1))

Диагонали трапеции рассчитываются по формулам, приведенным через теорему Пифагора в треугольниках, образованных высотой и диагоналями. d_1=√(c^2+db d(c^2-a^2 )/(d-b)) d_2=√(a^2+db (b(c^2-a^2))/(d-b))

💡 Видео

Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,Скачать

Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

СРЕДНЯЯ ЛИНИЯ ТРАПЕЦИИ #математика #егэ #shorts #профильныйегэСкачать

СРЕДНЯЯ ЛИНИЯ ТРАПЕЦИИ  #математика #егэ  #shorts #профильныйегэ

Составить уравнение прямой, содержащей среднюю линию трапеции. Геометрия 9 классСкачать

Составить уравнение прямой, содержащей среднюю линию трапеции. Геометрия 9 класс

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Урок 2. №23 ОГЭ. О боковой стороне трапеции, если ее угол В=60 и С=135 градусов. Соотношения сторонСкачать

Урок 2. №23 ОГЭ.  О боковой стороне трапеции, если ее угол В=60 и С=135 градусов. Соотношения сторон

Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

Замечательное свойство трапеции | ЕГЭ по математике 2020Скачать

Замечательное свойство трапеции | ЕГЭ по математике 2020

Задача, которую боятсяСкачать

Задача, которую боятся

Нахождение площади трапеции по координатамСкачать

Нахождение площади трапеции по координатам

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)

КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

КАК найти площадь трапеции? Геометрия 8 класс | Математика

Координаты середины отрезка. Уравнение средней линии или диагонали. Урок 4. Геометрия 8 класс.Скачать

Координаты середины отрезка. Уравнение средней линии или диагонали. Урок 4. Геометрия 8 класс.

Всё о трапеции за 60 секундСкачать

Всё о трапеции за 60 секунд
Поделиться или сохранить к себе: