Уравнение состояния в векторном виде

Уравнение состояния в векторном виде

Тема:«Векторно-матричные модели систем управления в непрерывном времени»

Понятие пространства состояний

Современная теория автоматического управления оперирует с векторно-матричными моделями динамических систем. При этом рассматриваются в общем случае многомерные системы, т.е. системы произвольного порядка со многими входами и многими выходами, в связи, с чем широко используются векторно-матричные уравнения и аппарат векторной алгебры. Для получения векторно-матричной модели (ВММ) исследуемая динамическая система представляется в виде “черного ящика” с некоторым числом входных и выходных каналов (рис. 1.1, а).

Уравнение состояния в векторном виде

Рис.1.1. Скалярное (а) и векторное (б) представления динамической системы в виде «черного ящика»

Все переменные, характеризующие систему, можно разделить на три группы.

1. Входные переменные или входные воздействия, генерируемые системами, внешними по отношению к исследуемой системе. Они характеризуются вектором входа.

Уравнение состояния в векторном видеr — число входов

2. Выходные переменные, характеризующие реакцию системы на указанные входные воздействия. Представляются вектором выхода

Уравнение состояния в векторном видеm — число выходов.

3. Промежуточные переменные, характеризующие внутреннее состояние системы, — переменные состояния, представляются вектором

Уравнение состояния в векторном видеn — число переменных состояния.

Таким образом, совокупность входов можно рассматривать как один обобщенный вход, на который воздействует вектор входа u, совокупность выходов как вектор y, а совокупность промежуточных координат, характеризующих состояние системы, — в виде вектора состояния x (см. рис. 1.1, б).

Состояние системы — это та минимальная информация о прошлом, которая необходима для полного описания будущего поведения (т.е. выходов) системы, если поведение ее входов известно.

Собственно система, ее входы и выходы — это три взаимосвязанных объекта, которые в каждой конкретной ситуации определяются соответственно математической моделью системы, заданием множеств входных и выходных переменных.

Решение задач анализа и синтеза связано с исследованием состояний системы, множество которых образует пространство состояний,Уравнение состояния в векторном виде.

Векторно-матричные модели в непрерывном времени

В общем случае динамическая система в непрерывном может быть описана парой матричных уравнений:

где Fn-мерная вектор-функция системы; Qm-мерная вектор-функция выхода.

Матричное уравнение (1.1) называют уравнением состояния системы. Его решение, удовлетворяющее начальному условию Уравнение состояния в векторном виде, дает вектор состояния системы

Уравнение состояния в векторном виде

Матричное уравнение (1.2), определяющее выходные переменные в зависимости от x(t) и u(t), называют уравнением выхода.

В частном случае зависимости Уравнение состояния в векторном видемогут быть линейными комбинациями переменных состояния xi и входных переменных uq. При этом динамическая система описывается в векторно-матричной форме:

Уравнение состояния в векторном виде

Переход к стационарным моделям позволяет оперировать с коэффициентными матрицами, т.е. со стационарными уравнениями

Уравнение состояния в векторном виде

А — функциональная матрица размером n x n, называемая матрицей состояния системы (объекта);

В — функциональная матрица размером n x r, называемая матрицей управления (входа);

С — функциональная матрица размером m x n, называемая матрицей выхода по состоянию;

D — функциональная матрица размером m x r, называемая матрицей выхода по управлению.

Очень часто D=0, т.е. выход непосредственно не зависит от входа.

В дальнейшем под векторно-матричной моделью объекта (системы) будем понимать описание ее динамического поведения в классе стационарных непрерывных линейных систем, представленное в виде уравнений (1.6), (1.7).

Таким образом, ВММ имеет единую форму представления, что значительно облегчает алгоритмизацию и компьютерную реализацию проектных процедур и проектных операций структурно-параметрического синтеза и анализа систем управления. Однако с использованием ВММ может быть получено лишь приближенное проектное решение, которое потребует дальнейшего уточнения, так как такие модели отображают динамическое поведение реального объекта лишь в классе стационарных линейных систем.

Построение ВММ реального объекта сопряжено с проблемами линеаризации исходного математического описания и приведения его к структурированному виду — форме Коши.

Если мы знаем физическое описание системы и можем записать уравнения, описывающие поведения ее отдельных частей, то получить уравнения состояния системы обычно сравнительно не трудно. Покажем эту процедуру на нескольких примерах.

Пример 1.1. Получим уравнения состояния для простейшей RLC-цепи, показанной на рис 1.2.

Уравнение состояния в векторном виде

Динамическое поведение этой системы при Уравнение состояния в векторном видеполностью определяется, если известны начальные значения Уравнение состояния в векторном видеи входное напряжение U(t) при Уравнение состояния в векторном виде. Следовательно, Уравнение состояния в векторном видеможно выбрать в качестве переменных состояния, то есть Уравнение состояния в векторном виде

Для указанных переменных состояния можно записать дифференциальные уравнения

Уравнение состояния в векторном виде

или в векторно-матричной форме

Уравнение состояния в векторном виде

Таким образом для рассматриваемой системы матрицы А, В, С векторно-матричной модели будут иметь следующий вид:

Уравнение состояния в векторном виде

Пример 1.2. На рис. 1.3. показан электродвигатель постоянного тока независимого возбуждения, работающий при постоянном магнитном потоке (Ф=const).

Уравнение состояния в векторном виде

Дифференциальные уравнения для такого объекта могут быть записаны относительно следующих переменных состояния: Уравнение состояния в векторном виде— скорости вращения ротора, тока якоря i(t), углового перемещения ротора Уравнение состояния в векторном виде. При использовании знакомых зависимостей для электродвижущей силы Уравнение состояния в векторном видеи вращающего момента двигателя Уравнение состояния в векторном видеполучим уравнение электрической цепи

Уравнение состояния в векторном виде

и уравнения вращающейся части

Уравнение состояния в векторном виде

где J – приведенный момент инерции электродвигателя.

Представляя векторы состояния, входа и выхода как Уравнение состояния в векторном видеполучим следующую векторно-матричную модель электродвигателя постоянного тока

Уравнение состояния в векторном виде

То есть для рассматриваемой системы матрицы А, В, С векторно-матричной модели будут иметь следующий вид:

Уравнение состояния в векторном виде

Пример 1.3. Построим векторно-матричную модель электромеханического объекта — электропривода постоянного тока, приводящего в движение через механический редуктор тяжелую платформу. Функциональная схема такого объекта приведена на рис. 1.4.

Уравнение состояния в векторном виде

Здесь легко выделить три функциональных элемента, соответствующие трем видам преобразования энергии:

преобразователь, осуществляющий управляемое преобразование электрической энергии;

двигатель, выполняющий преобразование электрической энергии в механическую, — электромеханический преобразователь;

механизм, осуществляющий передачу механической энергии от вала двигателя через редуктор к рабочему органу — платформе.

При использовании общеизвестных допущений [5] и обозначений координат и параметров такого объекта его динамическое поведение при МС=0 описывается следующей системой линейных дифференциальных уравнений:

Уравнение состояния в векторном виде

Уравнение состояния в векторном виде

Если компонентами вектора состояния выбрать Уравнение состояния в векторном виде, где Uп – напряжение преобразователя, iя — ток электродвигателя, Уравнение состояния в векторном виде— скорость вращения электродвигателя, МУ — момент упругости механизма, Уравнение состояния в векторном виде— скорость вращения механизма, то элементы векторно-матричной модели

принимают следующий вид:

Уравнение состояния в векторном виде

Уравнение состояния в векторном виде

После подстановки реальных значений параметров объекта, которые приведены в табл. 1.1, компоненты матриц состояния А и управления В принимают вид (1.13).

Уравнение состояния в векторном виде

На рис. 1.5. приведено окно редактирования векторно-матричной модели (1.13) в среде Компьютерного комплекса функционального проектирования динамических систем.

Уравнение состояния в векторном виде

Контрольные вопросы к лекции № 1.

1. Какие переменные при построении математического описания системы принято называть

a) входными переменными;

b) выходными переменными;

c) переменными состояния?

2. Математическое описание объекта с одним входом и одним выходом представлено структурной схемой, содержащей q элементов, представленных передаточной функцией общего вида

Уравнение состояния в векторном виде

Как в этом случае можно определить размерность пространства состояния Уравнение состояния в векторном видедля описания этого объекта?

3. Математическое описание объекта с двумя входами Уравнение состояния в векторном видеи одним выходом y(t) представлено следующим уравнением в операторной форме

Уравнение состояния в векторном виде

Какова в этом случае будет размерность пространства состояния n для описания этого объекта?

4. Выберите из приведенных ниже записей возможные формы представления уравнения состояния для непрерывных систем.

Уравнение состояния в векторном виде

5. Объект управления имеет r – входов, m — выходов, его математическое описание в непрерывном времени содержит n дифференциальных уравнений первого порядка. Какова в этом случае будет размерность матрицы состояния?

6. Сформируйте векторно-матричную модель фильтра, электрическая схема которого представлена на рис. 1.6.

Уравнение состояния в векторном виде

Здесь следует учесть, что

  • объект имеет один вход — U1 один выход — iH; все параметры электрической схемы R1, R2, L, C1, C2, RH известны и являются постоянными;
  • могут быть использованы следующие обозначения Уравнение состояния в векторном виде

7.При составлении математического описания динамических процессов в упругом электромеханическом объекте, влючающем в себя электродвигатель постоянного тока независимого возбуждения (Ф=const) и механизм, модель которого представляется двухмассовой системой (см. пример 1.3), могут быть использованы следующие переменные:

  • iя — ток электродвигателя,
  • Уравнение состояния в векторном виде— скорость вращения электродвигателя,
  • Му – упругий момент механизма,
  • Уравнение состояния в векторном виде— скорость вращения механизма,
  • Уравнение состояния в векторном виде— угол поворота ротора электродвигателя,
  • l – линейное перемещение механизма.

Какие из этих переменных, и в какой последовательности включены в состав вектора состояния Уравнение состояния в векторном видеприведенной ниже векторно-матричной модели?

Уравнение состояния в векторном виде

ОТВЕТЫ

a) переменные, характеризующие реакцию системы на входные воздействия;

b) переменные, генерируемые системами, внешними по отношению к исследуемой системе;

c) промежуточные переменные, характеризующие внутреннее состояние системы.

Видео:Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Пространство состояний в задачах проектирования систем оптимального управления

Уравнение состояния в векторном виде

Введение

Исследование системы управления во временной области с помощью переменных состояния широко используется в последнее время благодаря простоте проведения анализа.

Состоянию системы соответствует точка в определённом евклидовом пространстве, а поведение системы во времени характеризуется траекторией, описываемой этой точкой.

При этом математический аппарат включает готовые решения по аналоговому и дискретному LQR и DLQR контролерам, фильтра Калмана, и всё это с применением матриц и векторов, что и позволяет записывать уравнения системы управления в обобщённом виде, получая дополнительную информацию при их решении.

Целью данной публикации является рассмотрение решения задач проектирования систем оптимального управления методом описания пространства состояний с использованием программных средств Python.

Теория кратко

Векторно-матричная запись модели линейного динамического объекта с учетом уравнения измерения принимает вид:

Уравнение состояния в векторном виде(1)

Если матрицы A(t), B(t) и C(t) не зависят от времени, то объект называется объектом с постоянными коэффициентами, или стационарным объектом. В противном случае объект будет нестационарным.

При наличии погрешностей при измерении, выходные (регулируемые) сигналы задаются линеаризованным матричным уравнением:

Уравнение состояния в векторном виде(2)

где y(t) – вектор регулируемых (измеряемых) величин; C(t) – матрица связи вектора измерений с вектором состояний; v(t) – вектор ошибок измерений (помехи).

Структура линейной непрерывной системы, реализующая уравнения (1) и (2), приведена на рисунке:

Уравнение состояния в векторном виде

Данная структура соответствует математической модели объекта, построенной в пространстве состояний его входных x(t), u(t), выходных y(t) и внутренних, или фазовых координат x(t).

Для примера рассмотрим математическую модель двигателя постоянного тока с независимым возбуждением от постоянных магнитов. Система уравнений электрической и механической частей двигателя для рассматриваемого случая будет выглядеть так:

Уравнение состояния в векторном виде(3)

Первое уравнение отражает взаимосвязь между переменными в цепи якоря, второе — условия механического равновесия. В качестве обобщенных координат выберем ток якоря I и частоту вращения якоря ω.

Управлением являются напряжение на якоре U, возмущением — момент сопротивления нагрузки Mc. Параметрами модели являются активное сопротивление и индуктивность цепи и якоря, обозначенные соответственно , и , а также приведенный момент инерции J и конструктивные постоянные се и см (в системе СИ: Cе=См).

Разрешая исходную систему относительно первых производных, получим уравнения двигателя в пространстве состояний.

Уравнение состояния в векторном виде(4)

В матричном виде уравнения (4) примут вид (1):

Уравнение состояния в векторном виде(5)

где вектор обобщенных координат Уравнение состояния в векторном виде, вектор управлений U =u (в рассматриваемом случае он является скаляром), вектор (скаляр) возмущений Mc=f. Матрицы модели:

Уравнение состояния в векторном виде(6)

Если в качестве регулируемой величины выбрать частоту вращения, то уравнение измерения запишется в виде:

Уравнение состояния в векторном виде(7)

а матрица измерений примет вид:

Сформируем модель двигателя в Python. Для этого вначале зададим конкретные значения параметров двигателя: U = 110 В; R =0,2 Ом; L = 0,006 Гн; J =0,1 кг/м2;Ce =Cm=1,3 В/С и найдем значения коэффициентом матриц объекта из (6).

Разработка программы формирующей модель двигателя с проверкой матриц на наблюдаемость и управляемость:

При разработке программы использовалась специальная функция def matrix_rank для определения ранга матрицы и функции, приведенные в таблице:

Уравнение состояния в векторном виде

Результаты работы программы:

Матрица А:
[[ -33.33333333 -216.66666667]
[ 13. 0. ]]
Матрица B:
[[166.66666667]
[ 0. ]]
Матрица C:
[[0 1]]
Скаляр D:
0
Передаточная функция двигателя:
2167/(s^2 + 33.33 s + 2817)
Ранг матрицы управляемости: 2
Ранг матрицы наблюдаемости: 2

Уравнение состояния в векторном виде

1. На примере двигателя постоянного тока с независимым магнитным возбуждением рассмотрена методика проектирования управления в пространстве состояний;

2. В результате работы программы получены передаточная функция, переходная характеристика, а так же ранги матриц управляемости и наблюдаемости. Ранги совпадают с размерностями пространства состояний, что подтверждает управляемость и наблюдаемость модели.

Пример проектирования оптимальной системы управления с дискретным dlqr контролером и полной обратной связью

Определения и терминология

Линейно-квадратичный регулятор (англ. Linear quadratic regulator, LQR) — в теории управления один из видов оптимальных регуляторов, использующий квадратичный функционал качества.

Задача, в которой система описывается линейными дифференциальными уравнениями, а показатель качества, представляет собой квадратичный функционал, называется задачей линейно-квадратичного управления.

Широкое распространение получили линейно-квадратичные регуляторы (LQR) и линейно-квадратичные гауссовы регуляторы (LQG).

Приступая к практическому решению задачи всегда нужно помнить об ограничениях

Для синтеза оптимального дискретного регулятора линейных стационарных систем нужна функция численного решения уравнения Беллмана.Такой функции в библиотеке Python Control Systems [1] нет, но можно воспользоваться функцией для решения уравнения Риккати, приведенной в публикации [2]:

Но нужно ещё учесть ограничения на синтез оптимального регулятора, приведенные в [3]:

  • система, определяемая матрицами (A, B) должна быть стабилизируема;
  • должны выполняться неравенства S> 0, Q – N/R–N.T>0, пара матриц (Q – N/R–N.T,
    A – B/R–B.T) не должна иметь наблюдаемые моды с собственными значениями на
    действительной оси.

После копаний в обширной и не однозначной теории, которую, по понятным причинам, я не привожу, задачу удалось решить, и все ответы можно прочитать прямо в комментариях к коду.

Структурная схема регулятора системы управления с обратной связью по всем переменным состояния изображена на рисунке:

Уравнение состояния в векторном виде

Для каждого начального состояния x0 оптимальный линейный регулятор порождает оптимальное программное управление u*(x, k) и оптимальную траекторию х*(k).

Программа, формирующая модель оптимального управления с dlqr контролером

K=
[[ 0.82287566 -0.17712434]
[ 0.82287566 -0.17712434]]
P=
[[ 3.73431348 -1.41143783]
[-1.41143783 1.16143783]]
E=
[0.17712434+0.17712434j 0.17712434-0.17712434j]

Динамика состояний и управлений: x1, x2, u1, u2.

Уравнение состояния в векторном виде

Вывод

Отдельные задачи оптимального управления по типу приведенных можно решать средствами Python, комбинируя возможности библиотек Python Control Systems, SciPy,NumPy, что, безусловно, способствует популяризации Python, учитывая, что ранее такие задачи можно было решать только в платных математических пакетах.

Видео:Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Уравнения состояния

При решении некоторых задач теории автоматического управления удобнее представлять дифференциальное уравнение объекта (5.1) или дифференциальные уравнения системы (5.4) и (5.6) в виде совокупности дифференциальных уравнений первого порядка. Не умаляя общности, рассмотрим эти уравнения применительно к управляемому объекту.

Пусть объект описывается дифференциальным уравнением n-го порядка (5.1)

Уравнение состояния в векторном виде

Уравнение состояния в векторном виденазываемых переменными состояния и представим уравнение (5.70) в виде системы дифференциальных уравнений

Уравнение состояния в векторном виде

Уравнение состояния в векторном видеустанавливается алгебраическим уравнением

Уравнение состояния в векторном виде

Обычно уравнения (5.71) и (5.72) записываются в векторпо-матричной форме:

Уравнение состояния в векторном виде

Уравнение состояния в векторном виде— матрицы-столбцы. Матрицу-столбец-

Уравнение состояния в векторном видемогут иметь неодинаковые размерности.

В выборе переменных состояния имеется определенная свобода. Важно только, чтобы они были независимыми. От того, как выбраны переменные, зависит форма уравнений (5.73) и (5.74), т. е. вид входящих в них матриц.

При нормальной форме уравнений состояния в качестве переменных состояния выбираются сама управляемая величина п- 1 ее производные:

Уравнение состояния в векторном виде

Уравнение состояния в векторном видет. с. когда оно имеет вид

Уравнение состояния в векторном виде

Достоинством нормальной формы является то, что переменные состояния имеют ясный физический смысл, а некоторые из них (например, хих2 и х:]) могут быть непосредственно измерены датчиками различных типов.

Для получения уравнений состояния в канонической форме уравнение объекта (5.70) представляется в виде

Уравнение состояния в векторном виде

Уравнение состояния в векторном виде

Уравнение состояния в векторном виде

Если корни рь Ръ-Рп полинома С0(р) действительные однократные, то правая часть (5.80) может быть представлена в виде суммы элементарных дробей:

Уравнение состояния в векторном виде

Уравнение состояния в векторном виде

где К; и ()г- — коэффициенты разложения.

В качестве неременных состояния выбираются слагаемые суммы (5.81):

Уравнение состояния в векторном виде

Большим достоинством канонической формы является диагоиальиость матрицы Л , что существенно упрощает решение уравнения (5.73). Основной недостаток ее состоит в том, что переменные состояния не имеют ясного физического смысла, в результате чего возникает проблема их непосредственного измерения.

Существуют и другие способы выбора переменных состояния, которые здесь не рассматриваются.

Решение векторно-матричиого уравнения (5.73) может быть представлено в виде

Уравнение состояния в векторном виде

Здесь оно без строгого доказательства построено по аналогии с решением линейного дифференциального уравнения 1-го порядка

Уравнение состояния в векторном виде

общий интеграл которого, как известно, определяется но формуле

Уравнение состояния в векторном виде

Уравнение состояния в векторном виденазывается переходной или фундаментальной матрицей. Если уравнения состояния представлены в канонической форме, то матрица А диагональная и имеет вид (5.85). Тогда

Уравнение состояния в векторном виде

При других формах уравнений состояния для определения фундаментальной матрицы можно использовать известные способы нахождения матричных функций, например, теоремы Кели—Гамильтона или Сильвестра. Можно также использовать формулу

Уравнение состояния в векторном виде

Уравнение состояния в векторном виде

Уравнение состояния в векторном виде

При необходимости можно осуществить обратный переход от уравнений состояния к передаточным функциям объекта. Для этого уравнение (5.73) запишем в изображениях по Лапласу:

Уравнение состояния в векторном виде

Уравнение состояния в векторном видеполучается формула (5.88). Из уравнения

(5.74) с учетом (5.89) найдем изображение управляемой величины при нулевых начальных значениях:

Уравнение состояния в векторном виде

Уравнение состояния в векторном виде

При описании свойств объекта уравнениями состояния возникают две проблемы, нетипичные для случая, когда используется одно дифференциальное уравнение я-то порядка. Эти проблемы рассматриваются в следующем параграфе.

📹 Видео

Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Уравнение состояния идеального газа. Практическая часть. 10 класс.Скачать

Уравнение состояния идеального газа. Практическая часть. 10 класс.

Уравнения прямой на плоскости | Векторная алгебраСкачать

Уравнения прямой на плоскости | Векторная алгебра

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/Скачать

Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/

Аналит. Экстренный выпуск #02 Векторные уравненияСкачать

Аналит. Экстренный выпуск #02 Векторные уравнения

идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗАСкачать

идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

18+ Математика без Ху!ни. Векторное произведение.Скачать

18+ Математика без Ху!ни. Векторное произведение.

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Квантовая механика 10 - Правило Борна. Нормирование векторов состояния.Скачать

Квантовая механика 10 - Правило Борна. Нормирование векторов состояния.

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.
Поделиться или сохранить к себе:
Уравнение состояния в векторном виде