Читайте также:
|
Газ | Химическая формула | Масса 1 кмоль, кг/кмоль | Газовая постоянная R, дж/кг град) | Плотность газа при Нормальных физических условиях, кг/м 3 |
Кислород | о2 | 259,8 | 1,429 | |
Водород | н2 | 2,016 | 4124,3 | 0,090 |
Азот | N2 | 28,02 | 296,8 | 1,250 |
Окись углерода | СО | 296,8 | 1,250 | |
Воздух | — | 28,96 | 287,0 | 1,293 |
Углекислый газ | со2 | 189,9 | 1,977 | |
Водяной пар | н2о | 18,016 | 461,6 | 0,804 |
Гелий | Не | 4,003 | 2077,2 | 0,178 |
Аргон | Аг | 39,944 | 208,2 | 1,784 |
Аммиак | NH3 | 17,031 | 488,2 | 0,771 |
Выведем основной закон идеальных газов по другому.
Из уравнений [5] и [8] следует, что
Рассмотрим 1 кг газа. Произведение концентрации молекул п, т. е. числа молекул в единице объема, и объема одного моля газа Vмоля равно числу молекул в одном моле, т. е. числу Авогадро N А.. NA = пVмоля .
Вместо двух постоянных: универсальной газовой постоянной R и числа Авогадро NA — была введена постоянная k равная отношению Она получила название постоянной Больцмана k =
Учитывая, что в нем содержится N молекул и, следовательно, п = N/V, получим: PV/Т=Nk = соnst.
Постоянную величину Nk, отнесенную к 1 кг газа, обозначают буквой R и называют газовой постоянной. Поэтому
Полученное соотношение представляет собой уравнение Клапейрона (1834г.).
Умножив [11] на m, получим уравнение состояния для произвольной массы газа m:
Используя вес G = mg где g =9.8 м/с 2 PV = GRT [13]
Уравнению Клапейрона можно придать универсальную форму, если отнести газовую постоянную к 1 кмолю газа, т. е. к количеству газа, масса которого в килограммах численно равна молекулярной массе μ.
Положив в (1.10) М = μ, и V = Vμ, получим для одного моля уравнение Клапейрона — Менделеева
Здесь Vμ — объем киломоля газа, а μR— универсальная газовая постоянная — работа, совершаемая 1 кг газа при нагревании его на 1 0 С при Р = const.
В соответствии с законом Авогадро (1811г.) объем 1 кмоля, одинаковый в одних и тех же условиях для всех идеальных газов, при нормальных физических условиях равен 22,4136 м 3 , поэтому
μR =PVμ/T =101,325 . 22,4136/273,15 = 8314 Дж/(кмоль . К). [15]
Газовая постоянная 1 кг газа составляет R = 8314/μ ; (1.12)
Плотность идеального газа может быть рассчитана с некоторой степенью точности на основе уравнения состояния идеальных газов
где М – масса 1 кмоль (мольной массы) газа в кг/кмоль
Из уравнения следует
Объем занимаемый единицей массы газа или удельный объем можно определить по уравнению
Видео:Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать
Универсальное уравнение состояния идеального газа.
Идеальным газом называется такой газ, у которого отсутствуют силы взаимного притяжения и отталкивания между молекулами и пренебрегают размерами молекул. Все реальные газы при высоких температурах и малых давлениях можно практически считать как идеальные газы.
Уравнение состояния как для идеальных, как и для реальных газов описываются тремя параметрами по уравнению (1.7).
Уравнение состояния идеального газа можно вывести из молекулярно-кинетической теории или из совместного рассмотрения законов Бойля-Мариотта и Гей-Люссака.
Это уравнение было выведено в 1834 г. французким физиком Клапейроном и для 1 кг массы газа имеет вид:
где: R — газовая постоянная и представляет работу 1 кг газа в процессе при постоянном давлении и при изменении температуры на 1 градус.
Уравнение (2.7) называют термическим уравнением состояния или характеристическим уравнением.
Для произвольного количества газа массой m уравнение состояния будет:
В 1874 г. Д.И.Менделеев основываясь на законе Дальтона («В равных объемах разных идеальных газов, находящихся при одинаковых температурах и давлениях, содержится одинаковое количество молекул») предложил универсальное уравнение состояния для 1 кг газа, которую называют уравнением Клапейрона-Менделеева:
где: μ — молярная (молекулярная) масса газа, (кг/кмоль);
Rμ = 8314,20 Дж/кмоль (8,3142 кДж/кмоль) — универсальная газовая постоянная и представляет работу 1 кмоль идеального газа в процессе при постоянном давлении и при изменении температуры на 1 градус.
Зная Rμ можно найти газовую постоянную R = Rμ/μ.
Для произвольной массы газа уравнение Клапейрона-Менделеева будет иметь вид:
Смесь идеальных газов.
Газовой смесью понимается смесь отдельных газов, вступающих между собой ни в какие химические реакции. Каждый газ (компонент) в смеси независимо от других газов полностью сохраняет все свои свойства и ведет себя так, как если бы он один занимал весь объем смеси.
Парциальное давление – это давление, которое имел бы каждый газ, входящий в состав смеси, если бы этот газ находился один в том же количестве, в том же оюъеме и при той же температуре, что и в смеси.
Газовая смесь подчиняется закону Дальтона:
║Общее давление смеси газов равно сумме парциальных давлений ║отдельных газов, составляющих смесь.
где Р1 , Р2 , Р3 . . . Рn – парциальные давления.
Состав смеси задается объемными, массовыми и мольными долями, которые определяются соответственно по следующим формулам:
где V1 ; V2 ; … Vn ; Vсм –объемы компонентов и смеси;
m1 ; m2 ; … mn ; mсм – массы компонентов и смеси;
ν1 ; ν2 ; … νn ; νсм – количество вещества (киломолей)
компонентов и смеси.
Для идеального газа по закону Дальтона:
Связь между объемными и массовыми долями следующее:
где: μ1 , μ2 , … μn , μсм – молекулярные массы компонентов и смеси.
Молекулярная масса смеси:
Газовая постоянная смеси:
Удельные массовые теплоемкости смеси:
Удельные молярные (молекулярные) теплоемкости смеси:
Тема 3. Второй закон термодинамики.
Основные положения второго закона термодинамики.
Первый закон термодинамики утверждает, что теплота может превращаться в работу, а работа в теплоту и не устанавливает условий, при которых возможны эти превращения.
Превращение работы в теплоту происходит всегда полностью и безусловно. Обратный процесс превращения теплоты в работу при непрерывном её переходе возможен только при определенных условиях и не полностью. Теплота сам собой может переходит от более нагретых тел к холодным. Переход теплоты от холодных тел к нагретым сам собой не происходит. Для этого нужно затратить дополнительную энергию.
Таким образом для полного анализа явления и процессов необходимо иметь кроме первого закона термодинамики еще дополнительную закономерность. Этим законом является второй закон термодинамики. Он устанавливает, возможен или невозможен тот или иной процесс, в каком направлении протекает процесс, когда достигается термодинамическое равновесие и при каких условиях можно получить максимальную работу.
Формулировки второго закона термодинамики.
Для существования теплового двигателя необходимы 2 источника – горячий источник и холодный источник (окружающая среда). Если тепловой двигатель работает только от одного источника то он называется вечным двигателем 2-го рода.
1 формулировка (Оствальда):
| «Вечный двигатель 2-го рода невозможен».
Вечный двигатель 1-го рода это тепловой двигатель, у которого L>Q1, где Q1 — подведенная теплота. Первый закон термодинамики «позволяет» возможность создать тепловой двигатель полностью превращающий подведенную теплоту Q1в работу L, т.е. L = Q1. Второй закон накладывает более жесткие ограничения и утверждает, что работа должна быть меньше подведенной теплоты (L 0), то системе подводится тепло.
Если энтропия системы уменьшается (Ds ht . (3.10)
Тема 4. Термодинамические процессы.
🎥 Видео
Уравнение состояния идеального газа. 10 класс.Скачать
Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать
идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗАСкачать
Уравнение состояния идеального газа. Практическая часть. 10 класс.Скачать
Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/Скачать
Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать
Уравнение состояния идеального газаСкачать
ЕГЭ. Физика. Уравнение состояния идеального газа. ПрактикаСкачать
ЕГЭ по физике. Теория #25. Идеальный газ. Уравнение состояния идеального газаСкачать
Уравнение состояния идеального газаСкачать
Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать
10 класс урок №39 Уравнение состояния идеального газаСкачать
Физика 10 класс: Уравнение Клапейрона-МенделееваСкачать
Уравнение состояния идеального газа. Газовые законыСкачать
Урок 147. Задачи на основное уравнение МКТ идеального газаСкачать
Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать