Уравнение состояния газа через концентрацию молекул

Основное уравнение молекулярно-кинетической теории (МКТ) с выводом

В статье рассмотрена модель идеального газа, приведено основное уравнение молекулярно-кинетической теории и его вывод.

Чтобы объяснить свойства материи в газообразном состоянии, в физике применяется модель идеального газа. Идеальный газ — разреженный, состоящий из одного типа атомов газ, частицы которого не взаимодействуют между собой. Помимо основных положений МКТ эта модель предполагает, что:

  • молекулы имеют пренебрежимо малый объем в сравнении с объемом емкости
  • при сближении частиц друг с другом и с границами емкости имеют место силы отталкивания

Видео:Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Основное уравнение молекулярно-кинетической теории

Физический смысл основного уравнения МКТ заключается в том, что давление идеального газа — это совокупность всех ударов молекул о стенки сосуда. Это уравнение можно выразить через концентрацию частиц, их среднюю скорость и массу одной частицы:

Уравнение состояния газа через концентрацию молекул

p – давление молекул газа на границы емкости,

m0 – масса одной молекулы,

n — концентрация молекул, число частиц N в единице объема V;

v 2 — средне квадратичная скорость молекул.

Видео:Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

Вывод основного уравнения МКТ

Уравнение состояния газа через концентрацию молекул

Частицы идеального газа при соударениях с границами емкости ведут себя как упругие тела. Такое взаимодействие описывается согласно законам механики. При соприкосновении частицы с границей емкости проекция vx скоростного вектора на ось ОХ, проходящую под прямым углом к границе сосуда, меняет свой знак на противоположный, но сохраняется неизменной по модулю:

Поэтому после соударения частицы с границей емкости проекция импульса молекулы на ось ОХ меняется с mv1x = –mvx на mv2x = mvx.

Изменение импульса молекулы ΔP равняется удвоенному произведению массы молекулы на ее скорость:

Уравнение состояния газа через концентрацию молекул

Поскольку в каждом из шести основных направлений декартовой системы координат (вверх, вниз, вперед, назад, вправо, влево) движется одна шестая часть частиц N/6. Тогда число частиц, которые сталкиваются с каждой стенкой за время Δt равно:

Уравнение состояния газа через концентрацию молекул

S – площадь этой стенки

n — концентрация частиц

Давление p равно отношению силы F к площади S, на которую действует эта сила:

Уравнение состояния газа через концентрацию молекул

Суммарная сила, с которой частицы давят на стенку равна отношению произведения числа этих частиц N и изменения импульса ΔP ко времени, в течение которого происходит давление:

Уравнение состояния газа через концентрацию молекул

Исходя из вышенаписанного получаем:

Уравнение состояния газа через концентрацию молекул

Уравнение состояния газа через концентрацию молекул

Если заменить среднее значение кинетической энергии поступательного движения молекул — E:

Уравнение состояния газа через концентрацию молекул

и подставить эту формулу в основное уравнение МКТ, получим давление идеального газа:

Уравнение состояния газа через концентрацию молекул

Давление идеального газа равняется двум третям средней кинетической энергии поступательного движения молекул на единицу объема. При решении задач реальный газ можно считать идеальным газом, если он одноатомный и можно пренебречь взаимодействием между частицами.

Уравнение состояния газа через концентрацию молекул

Понравилась статья, расскажите о ней друзьям:

Видео:Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Уравнение состояния идеального газа

Содержание:

Уравнение состояния идеального газа получило название «уравнение Менделеева-Клапейрона». Давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений: закон Дальтона.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Видео:Урок 147. Задачи на основное уравнение МКТ идеального газаСкачать

Урок 147. Задачи на основное уравнение МКТ идеального газа

Уравнение состояния идеального газа

Уравнение состояния идеального газа — это p = nkT называется уравнением Менделеева Клапейрона и оно даёт взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа давления, объёма и температуры. Поэтому уравнение Менделеева Клапейрона называется ещё уравнением состояния идеального газа.

Термодинамические параметры газа

В предыдущих главах было показано, что при описании свойств газа можно пользоваться величинами, характеризующими молекулярный мир (микромир), например энергией молекулы, скоростью ее движения, массой и т. п. Числовые значения таких величин мы можем определять только с помощью расчета. Все такие величины принято называть микроскопическими (от греческого «микрос» — малый).

Однако для описания свойств газов можно пользоваться и такими величинами, числовые значения которых находят простым измерением с помощью приборов, например давлением, температурой и объемом газа. Значения таких величин определяются совместным действием огромного числа молекул, поэтому они называются макроскопическими (от греческого «макрос» — большой).

Соотношение (4.1): Уравнение состояния газа через концентрацию молекулустанавливает связь между микроскопическими и макроскопическими величинами для газов. Поэтому формулу (4.1) называют основным уравнением молекулярно-кинетической теории газов. Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа. Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

Если взять определенную массу газа т, то при постоянных р, V и Т газ будет находиться в равновесном состоянии. Когда происходят изменения этих параметров, то в газе протекает тот или иной процесс. Если этот процесс состоит из ряда непрерывно следующих друг за другом равновесных состояний газа, то он называется равновесным процессом. Равновесный процесс должен протекать достаточно медленно, так как при быстром изменении параметров давление и температура не могут иметь соответственно одинаковые значения во всем объеме газа. В этой главе рассматриваются только равновесные процессы в газах, при которых масса газа остается постоянной.

Когда процесс в газе заканчивается, то газ переходит в новое состояние, а его параметры приобретают новые постоянные числовые значения, вообще говоря, отличные от их значений в начале процесса. Если же при постоянной массе газа значения всех его параметров в начале и в конце процесса окажутся одинаковыми, то процесс называется круговым или замкнутым.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом. Газовый закон, выражающий связь между всеми тремя параметрами газа, называется объединенным газовым законом.

Отметим еще, что такого процесса в газе, при котором изменялся бы только один параметр газа, не существует, так как значения этих параметров взаимосвязаны. Примером сказанного является закон Шарля, выражающий связь между р и Т.

Объединенный газовый закон. Приведение объема газа к нормальным условиям

Связь между давлением, объемом и температурой определенной массы газа устанавливается с помощью соотношения (4.9):

Уравнение состояния газа через концентрацию молекул

Поскольку Уравнение состояния газа через концентрацию молекулобозначает число молекул в единице объема газа, то Уравнение состояния газа через концентрацию молекул, где N — общее число молекул, V — объем газа. Тогда получим

Уравнение состояния газа через концентрацию молекул

Так как при постоянной массе газа N остается неизменным, Уравнение состояния газа через концентрацию молекул— постоянное число, т. е.

Уравнение состояния газа через концентрацию молекул

Поскольку значения р, V и Т в (5.2) относятся к одному и тому же состоянию газа, можно следующим образом сформулировать объединенный газовый закон: при постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Следовательно, если числовые значения параметров в начале процесса, происходящего с какой-либо определенной массой газа, обозначить через р1 , V1 и Т1, а их значения в конце процесса соответственно через р2 , V2 и Т2, то

Уравнение состояния газа через концентрацию молекул

Формулы (5.2) и (5.3) представляют собой математическое выражение объединенного газового закона.

На практике иногда нужно установить, какой объем V0 займет имеющаяся масса газа при нормальных условиях, т. е. при Т0=273 К и при р0=1,013 . 10 5 Па. Если значения параметров для этой массы газа в каком-либо произвольном состоянии, отличном от нормального, обозначить через р, V и Т, то на основании (5.3) получаем Уравнение состояния газа через концентрацию молекул, или

Уравнение состояния газа через концентрацию молекул

Формула (5.4) позволяет приводить объем заданной массы газа к нормальным условиям.

Молярная газовая постоянная. Определение числового значения постоянной Больцмана

Формула (5.1) справедлива для любой массы газа, в которой содержится N молекул. Если применить эту формулу к одному молю какого-либо газа, то N нужно заменить постоянной Авогадро NA, а V — объемом одного моля Vмоль

Уравнение состояния газа через концентрацию молекул

Так как в одном моле любого газа содержится одно и то же число молекул NA, то произведение Уравнение состояния газа через концентрацию молекулимеет одинаковое значение для всех газов, т. е. не зависит от природы газа. Произведение Уравнение состояния газа через концентрацию молекул обозначается R и называется молярной газовой постоянной. Таким образом,

Уравнение состояния газа через концентрацию молекул

Уравнение состояния газа через концентрацию молекул

Числовое значение R можно найти, если применить (5.5) к состоянию одного моля газа при нормальных условиях, так как при этом Уравнение состояния газа через концентрацию молекулм 3 /моль (§ 3.6). Действительно,

Уравнение состояния газа через концентрацию молекул

Уравнение состояния газа через концентрацию молекул

Это числовое значение R в СИ необходимо запомнить, так как им часто пользуются при расчетах и при решении задач.

Теперь легко найти числовое значение постоянной Больнмана Уравнение состояния газа через концентрацию молекул. Из (5.6) получаем Уравнение состояния газа через концентрацию молекул. Подставляя сюда числовые значения R и Уравнение состояния газа через концентрацию молекул, вычисляем Уравнение состояния газа через концентрацию молекул:

Уравнение состояния газа через концентрацию молекул

Уравнение Клапейрона — Менделеева. Плотность газа

Выясним, как будет выглядеть соотношение (5.1), если в него ввести молярную газовую постоянную R. Так как N — полное число молекул в массе газа т, а Уравнение состояния газа через концентрацию молекул— число молекул в одном моле, то

Уравнение состояния газа через концентрацию молекул

где Уравнение состояния газа через концентрацию молекул— число молей в массе газа /т. Поэтому

Уравнение состояния газа через концентрацию молекул

Поскольку Уравнение состояния газа через концентрацию молекул, а Уравнение состояния газа через концентрацию молекулравно массе газа т, деленной на массу одного моля газа Уравнение состояния газа через концентрацию молекул, то получаем

Уравнение состояния газа через концентрацию молекул

Соотношение (5.7) называется уравнением Клапейрона — Менделеева или уравнением состояния для произвольной массы идеального газа. Для одного моля идеального газа уравнение Клапейрона — Менделеева принимает вид

Уравнение состояния газа через концентрацию молекул

С помощью формулы (5.7) легко выяснить, какими величинами определяется плотность газа. Так как Уравнение состояния газа через концентрацию молекул, то из (5.7) имеем

Уравнение состояния газа через концентрацию молекул

Зависимость средней квадратичной скорости молекул газа от температуры

Выясним теперь, как можно с помощью вычислений находить среднюю квадратичную скорость движения молекул газа Уравнение состояния газа через концентрацию молекул. Поскольку средняя кинетическая энергия поступательного движения молекул газа Уравнение состояния газа через концентрацию молекулравна (3/2) Уравнение состояния газа через концентрацию молекул, то можно написать Уравнение состояния газа через концентрацию молекул, откуда

Уравнение состояния газа через концентрацию молекул

Отметим, что под т в формуле (5.10) подразумевается масса одной молекулы в кг. Так как Уравнение состояния газа через концентрацию молекул, получим Уравнение состояния газа через концентрацию молекул. Поскольку Уравнение состояния газа через концентрацию молекула есть масса одного моля газа Уравнение состояния газа через концентрацию молекул(§ 3.6), имеем

Уравнение состояния газа через концентрацию молекул

Наконец, из (5.9) следует, что Уравнение состояния газа через концентрацию молекул, поэтому

Уравнение состояния газа через концентрацию молекул

Среднюю квадратичную скорость можно находить по любой из формул (5.10)—(5.12). Из функции Максвелла можно получить формулы для средней арифметической скорости и наивероятнейшей скорости. Средняя арифметическая скорость

Уравнение состояния газа через концентрацию молекул

Наконец, наивероятнейшую скорость вычисляют так:

Уравнение состояния газа через концентрацию молекул

(Используя график функции Максвелла (рис. 3.3), поясните, почему Уравнение состояния газа через концентрацию молекулменьше Уравнение состояния газа через концентрацию молекул, а Уравнение состояния газа через концентрацию молекулменьше Уравнение состояния газа через концентрацию молекул

Изохорический процесс

Процессы, при которых масса газа и один из его параметров остаются постоянными, называются изопроцессами (от греческого «изос» — равный, одинаковый). Поскольку имеется три параметра газа, существует три различных изопроцесса. Первый из них (изохорический) рассмотрен выше (§ 4.3). Процесс в газе, который происходит при постоянной массе и неизменном объеме, называется изохорическим (от греческого «хора» — пространство). Графики для этого процесса называются изохорами (рис. 4.3).

Отметим, что к любому изопроцессу применим объединенный газовый закон и формулы (5.3), (5.7) и (5.8) с учетом того, что один из параметров остается постоянным. При изохорическом процессе постоянным остается объем V, поэтому формула (5.3) после сокращения на V принимает вид

Уравнение состояния газа через концентрацию молекул

Итак, изохорический процесс подчиняется закону Шарля: при постоянной-массе газа и неизменном объеме давление газа прямо пропорционально его абсолютной температуре. Это видно и из уравнения Клапейрона — Менделеева (5.7):

Уравнение состояния газа через концентрацию молекул

Так как V, т, Уравнение состояния газа через концентрацию молекули R остаются постоянными, то из (5.7) следует, что р пропорционально Т. Отметим, что закон Шарля можно формулировать и так, как это было сделано в § 4.3.

Изобарический- процесс

Процесс в газе, который происходит при постоянной массе и неизменном давлении, называется изобарическим (от греческого «барос» — тяжесть). Этот процесс был изучен французским физиком Л. Гей-Люссаком в 1802 г.

Поскольку при изобарическом процессе р постоянно, то после сокращения на р формула (5.3) принимает вид

Уравнение состояния газа через концентрацию молекул

Формула (5.16) является математическим выражением закона Гей-Люссака: при постоянной массе газа и неизменном давлении объем газа прямо пропорционален его абсолютной температуре. (Это видно и из уравнения Клапейрона — Менделеева (5.7): так как р, т, Уравнение состояния газа через концентрацию молекули R постоянны, то объем V пропорционален Т.)

На рис. 5.1 схематически изображен опыт Гей-Люссака. Колба с газом помещается в сосуд с водой и льдом.

Уравнение состояния газа через концентрацию молекул

В пробку вставлена трубка, изогнутая таким образом, что свободный конец ее горизонтален. Газ в колбе отделен от окружающего воздуха небольшим столбиком ртути в трубке. Температуру газа определяют по термометру, а объем — по положению столбика ртути. Для этого на трубке нанесены деления, соответствующие определенному внутреннему объему трубки (при градуировке трубки можно учесть и расширение сосуда при нагревании, но оно сравнительно мало’).

Сначала по положению столбика ртути 1 определяют Уравнение состояния газа через концентрацию молекул— объем газа при 0°С. Затем газ нагревают (столбик ртути перемещается в положение 2), в процессе нагревания записывают значения объема и температуры и строят график, который называется изобарой.

Оказывается, что изобара представляет собой прямую линию (рис. 5.2, а), которая пересекается с осью абсцисс в точке А.

Из подобия треугольников на рис. 5.2, а следует

Уравнение состояния газа через концентрацию молекул

Обозначив Уравнение состояния газа через концентрацию молекулчерез Уравнение состояния газа через концентрацию молекул, получим

Уравнение состояния газа через концентрацию молекул

Здесь Уравнение состояния газа через концентрацию молекулкоэффициент объемного расширения газа (гл. 13).

Если повторять этот опыт для разных газов или для разных масс газа, то все графики будут пересекаться в точке А, соответствующей t=—273°С (рис. 5.2, б), т. е. коэффициент Уравнение состояния газа через концентрацию молекулодинаков для всех газов. Это означает, что расширение газа при изобарическом процессе не зависит от его природы.

Отметим, что для газов коэффициенты Уравнение состояния газа через концентрацию молекули Уравнение состояния газа через концентрацию молекулв формулах (4.2а) и (5.17) численно одинаковы, поэтому обычно пользуются одним Уравнение состояния газа через концентрацию молекул.

Изотермический процесс

Процесс в газе, который происходит при постоянной температуре, называется изотермическим.

Изотермический процесс в газе был изучен английским ученым Р. Бойлем и французским ученым Э. Мариоттом. Установленная ими опытным путем связь получается непосредственно из формулы (5.3) после сокращения на Т:

Уравнение состояния газа через концентрацию молекул

Формула (5.18) является математическим выражением закона Бойля — Мариотта: при постоянной массе газа и неизменной температуре давление газа обратно пропорционально его объему. Иначе говоря, в этих условиях произведение объема газа на соответствующее давление есть величина постоянная:
Уравнение состояния газа через концентрацию молекул
Соотношение (5.19) можно получить и из (5.7) или (5.8), так как при постоянном Г справа в формулах (5.7) и (5.8) стоит постоянная величина. График зависимости р от V при изотермическом процессе в газе представляет собой гиперболу и называется изотермой. На рис. 5.3 изображены три изотермы для одной и той же массы газа, но при разных температурах Т.

Уравнение состояния газа через концентрацию молекул

Отметим еще, что из формулы (5.9) непосредственно вытекает, что при изотермическом процессе плотность газа изменяется прямо пропорционально давлению:

Уравнение состояния газа через концентрацию молекул

(Подумайте, как проверить закон Бойля — Мариотта на опыте.)

Внутренняя энергия идеального газа

Как отмечалось, силы взаимодействия молекул в идеальном газе отсутствуют. Это означает, что молекулярно-потенциальной энергии у идеального газа нет. Кроме того, атомы идеального газа представляют собой материальные точки, т. е. не имеют внутренней структуры, а значит, не имеют и энергии, связанной с движением и взаимодействием частиц внутри атома. Таким образом, внутренняя энергия идеального газа представляет собой только сумму знамений кинетической энергии хаотического движения всех его молекул:

Уравнение состояния газа через концентрацию молекул

Поскольку у материальной точки вращательного движения быть не может, то у одноатомных газов (молекула состоит из одного атома) молекулы обладают только поступательным движением. Так как среднее значение энергии поступательного движения молекул определяется соотношением(4.8): Уравнение состояния газа через концентрацию молекул, то внутренняя энергия одного моля одноатомного идеального газа выразится формулой Уравнение состояния газа через концентрацию молекул, где Уравнение состояния газа через концентрацию молекул— постоянная Авогадро. Если учесть, что Уравнение состояния газа через концентрацию молекул, то получим:

Уравнение состояния газа через концентрацию молекул

Для произвольной массы одноатомного идеального газа имеем

Уравнение состояния газа через концентрацию молекул

Если молекула газа состоит из двух жестко связанных атомов (двухатомный газ), то молекулы при хаотическом движении приобретают еще и вращательное движение, которое происходит вокруг двух взаимно перпендикулярных осей. Поэтому при одинаковой температуре внутренняя энергия двухатомного газа больше, чем одноатомного, и выражается формулой

Уравнение состояния газа через концентрацию молекул

Наконец, внутренняя энергия многоатомного газа (молекула содержит три или больше атомов) в два раза больше, чем у одно-атомного при той же температуре:

Уравнение состояния газа через концентрацию молекул

поскольку вращение молекулы вокруг трех взаимно перпендикулярных осей вносит в энергию теплового движения такой же вклад, как поступательное движение молекулы по трем взаимно перпендикулярным направлениям.

Отметим, что формулы (5.23) и (5.24) теряют силу для реальных газов при высоких температурах, так как при этом в молекулах возникают еще колебания атомов, что ведет к увеличению внутренней энергии газа. (Почему это не относится к формуле (5.22)?)

Работа газа при изменении его объема

Физический смысл молярной газовой постоянной. Опыт показывает, что сжатый газ в процессе своего расширения может выполнять работу. Приборы и агрегаты, действия которых основаны на этом свойстве газа, называют пневматическими. На этом принципе действуют пневматические молотки, механизмы для закрывания и открывания дверей на транспорте и т. д.

Представим себе цилиндр с подвижным поршнем, заполненный газом (рис. 5.4).

Уравнение состояния газа через концентрацию молекул

Пока давление газа внутри цилиндра и окружающего наружного воздуха одинаковы, поршень неподвижен. Пусть при этом температура газа и окружающей среды равна Уравнение состояния газа через концентрацию молекула давление равно р.

Будем теперь медленно нагревать газ в цилиндре до температуры Уравнение состояния газа через концентрацию молекул. Газ при этом начинает изобарически расширяться (внешнее давление р остается постоянным), и поршень переместится из положения 1 в положение 2 на расстояние Уравнение состояния газа через концентрацию молекул. При этом газ совершит работу против внешней силы. Сила F, совершающая эту работу, будет равна рS, где S — площадь сечения цилиндра. Из механики известно, что работа выражается формулой Уравнение состояния газа через концентрацию молекул, или Уравнение состояния газа через концентрацию молекул. Так как Уравнение состояния газа через концентрацию молекулесть приращение объема газа в процессе его изобарического нагревания от Уравнение состояния газа через концентрацию молекулдо Уравнение состояния газа через концентрацию молекул, имеем

Уравнение состояния газа через концентрацию молекул

Нетрудно сообразить, что при изохорическом процессе работа газа равна нулю, так как никакого изменения объема, занятого газом, в этом случае не происходит. Вообще следует помнить, что газ выполняет работу только в процессе изменения своего объема, т. е. при Уравнение состояния газа через концентрацию молекул. Отметим, что при расширении газа Уравнение состояния газа через концентрацию молекулработа газа положительна; при сжатии газа Уравнение состояния газа через концентрацию молекулположительную работу выполняют внешние силы, а работа газа в этом случае отрицательна.

Выясним, как можно определить работу газа по графику зависимости р от V в том или ином газовом процессе. При изобарическом процессе график зависимости р от V представляет собой прямую линию, параллельную оси абсцисс, так как р постоянно. Из рис. 5.5 видно, что работа газа в этом случае численно равна заштрихованной площади.

Выясним, как найти работу газа при изотермическом процессе. На рис. 5.6 изображена изотерма идеального газа. При таком процессе газ выполняет работу, так как Уравнение состояния газа через концентрацию молекулв этом случае отлично от нуля. Формулу (5.25) здесь применять нельзя, так как она верна при постоянном давлении р, а в изотермической процессе р изменяется. Однако можно взять такое малое приращение объема Уравнение состояния газа через концентрацию молекул, при котором изменением давления можно пренебречь. Тогда приближенно можно считать, что при увеличении объема газа на Уравнение состояния газа через концентрацию молекулдавление остается постоянным. Работу Уравнение состояния газа через концентрацию молекулпри этом можно вычислять по формуле Уравнение состояния газа через концентрацию молекул. На рис. 5.6 она выражается заштрихованной площадью.

Разбивая интервал Уравнение состояния газа через концентрацию молекулна множество интервалов Уравнение состояния газа через концентрацию молекул, настолько малых, что работу на каждом из них можно вычислять по формуле Уравнение состояния газа через концентрацию молекул, полную работу газа найдем как сумму элементарных работ Уравнение состояния газа через концентрацию молекул. Это означает, что работа газа будет равна сумме площадей, подобных заштрихованной площади на рис. 5.6. Следовательно, работа газа при изотермическом процессе выражается площадью, ограниченной двумя ординатами Уравнение состояния газа через концентрацию молекули Уравнение состояния газа через концентрацию молекул, отрезком оси абсцисс и графиком зависимости р от V.

Уравнение состояния газа через концентрацию молекул

Можно строго доказать, что работа газа при любом процессе выражается площадью, ограниченной двумя ординатами, отрезком оси абсцисс и графиком того процесса в координатах V и р.

Выясним теперь физический смысл молярной газовой постоянной R. Применяя формулу (5.25) к одному молю идеального газа, получим

Уравнение состояния газа через концентрацию молекул

Но из уравнения Клапейрона — Менделеева (5.8) для одного моля можно записать для двух состояний газа:

Уравнение состояния газа через концентрацию молекул

Уравнение состояния газа через концентрацию молекул

Подставляя это выражение в (5.26), будем иметь Уравнение состояния газа через концентрацию молекул, или

Уравнение состояния газа через концентрацию молекул

Из (5.27) следует, что молярная газовая постоянная численно равна работе, совершаемой одним молем идеального газа при его изобарическом нагревании на один кельвин.

Из соотношения Уравнение состояния газа через концентрацию молекулвидно, что постоянная Больцмана показывает, сколько работы в среднем приходится на одну молекулу идеального газа при изобарическом нагревании на один кельвин.

Услуги по физике:

Лекции по физике:

Присылайте задания в любое время дня и ночи в ➔ Уравнение состояния газа через концентрацию молекулУравнение состояния газа через концентрацию молекул

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.

Основное уравнение молекулярно-кинетической теории (Ерюткин Е.С.)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Уравнение состояния газа через концентрацию молекул

Как уже было сказано ранее, начиная с этого урока, мы приступаем к изучению только газов. На прошлом уроке мы дали представление о способах количественного описания некой порции вещества. Сейчас же мы начнём описывать газ со стороны его качественных характеристик (микро- и макропараметров). Мы сформулируем понятие об идеальном газе, опишем его параметры и введём соотношение, связывающее эти параметры (основное уравнение МКТ).

🎬 Видео

10 класс, 4 урок, Уравнение состояния идеального газаСкачать

10 класс, 4 урок, Уравнение состояния идеального газа

Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1

идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗАСкачать

идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Решение задач на основное уравнение МКТ идеального газа | Физика 10 класс #29 | ИнфоурокСкачать

Решение задач на основное уравнение МКТ идеального газа | Физика 10 класс #29 | Инфоурок

Все формулы молекулярной физики, МКТ 10 класс, + преобразования и шпаргалкиСкачать

Все формулы молекулярной физики,  МКТ 10 класс,  + преобразования и шпаргалки

Уравнение состояния идеального газа. Практическая часть. 10 класс.Скачать

Уравнение состояния идеального газа. Практическая часть. 10 класс.

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Урок 151. Средняя кинетическая энергия молекул многоатомного газаСкачать

Урок 151. Средняя кинетическая энергия молекул многоатомного газа

Физика 10 класс (Урок№19 - Температура. Энергия теплового движения молекул.)Скачать

Физика 10 класс (Урок№19 - Температура. Энергия теплового движения молекул.)

Как за 4 МИНУТЫ выучить Химию? Химическое Количество, Моль и Закон АвогадроСкачать

Как за 4 МИНУТЫ выучить Химию? Химическое Количество, Моль и Закон Авогадро

Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | ИнфоурокСкачать

Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | Инфоурок
Поделиться или сохранить к себе: