Видео:Всё про влажность и водяной пар за 4 часа | Олимпиадная физикаСкачать
энергетика простыми словами
Видео:Насыщенный пар. Зависимость давления пара от температуры | Физика 10 класс #35 | ИнфоурокСкачать
Водяной пар
Промежуточное состояние вещества между состоянием реального газа и жидкостью принято называть парообразным или просто паром. Превращение жидкости в пар представляет собой фазовый переход из одного агрегатного состояния в другое. При фазовом переходе наблюдается скачкообразное изменение физических свойств вещества.
Примерами таких фазовых переходов является процесс кипения жидкости с появлением влажного насыщенного пара и последующим переходом его в лишенный влаги сухой насыщенный пар или обратный кипению процесс конденсации насыщенного пара.
Одно из основных свойств сухого насыщенного пара заключается в том, что дальнейший подвод теплоты к нему приводит к возрастанию температуры пара, т. е. перехода его в состояние перегретого пара, а отвод теплоты — к переходу в состояние влажного насыщенного пара. В
Фазовые состояния воды
Рисунок 1. Фазовая диаграмма для водяного пара в T, s координатах.
Область I – газообразное состояние (перегретый пар, обладающий свойствами реального газа);
Область II – равновесное состояние воды и насыщенного водяного пара (двухфазное состояние). Область II также называют областью парообразования;
Область III – жидкое состояние (вода). Область III ограничена изотермой ЕК;
Область IV – равновесное состояние твердой и жидкой фаз;
Область V – твердое состояние;
Области III, II и I разделены пограничными линиями AK (левая линия) и KD (правая линия). Общая точка K для пограничных линий AK и KD обладает особыми свойствами и называется критической точкой. Эта точка имеет параметры pкр, vкри Ткр, при которых кипящая вода переходит в перегретый пар, минуя двухфазную область. Следовательно, вода не может существовать при температурах выше Ткр.
Критическая точка К имеет параметры:
Значения p, t, v и s для обеих пограничных линий приводятся в специальных таблицах термодинамических свойств водяного пара.
Процесс получения водяного пара из воды
На рисунках 2 и 3 изображены процессы нагрева воды до кипения, парообразования и перегрева пара в p, v— и T, s-диаграммах.
Начальное состояние жидкой воды, находящейся под давлением p0 и имеющей температуру 0 °С, изображается на диаграммах p, v и T, s точкой а. При подводе теплоты при p = const температура ее увеличивается и растет удельный объем. В некоторый момент температура воды достигает температуры кипения. При этом ее состояние обозначается точкой b. При дальнейшем подводе теплоты начинается парообразование с сильным увеличением объема. При этом образуется двухфазная среда — смесь воды и пара, называемая влажным насыщенным паром. Температура смеси не меняется, так как тепло расходуется на испарение жидкой фазы. Процесс парообразования на этой стадии является изобарно-изотермическим и обозначается на диаграмме как участок bc. Затем в некоторый момент времени вся вода превращается в пар, называемый сухим насыщенным. Это состояние обозначается на диаграмме точкой c.
Рисунок 2. Диаграмма p, v для воды и водяного пара.
Рисунок 3. Диаграмма T, s для воды и водяного пара.
При дальнейшем подводе теплоты температура пара будет увеличиваться и будет протекать процесс перегрева пара c — d. Точкой d обозначается состояние перегретого пара. Расстояние точки d от точки с зависит от температуры перегретого пара.
Индексация для обозначения величин, относящихся к различным состояниям воды и пара:
- величина с индексом «0» относится к начальному состоянию воды;
- величина с индексом «′» относится к воде, нагретой до температуры кипения (насыщения);
- величина с индексом «″» относится к сухому насыщенному пару;
- величина с индексом «x» относится к влажному насыщенному пару;
- величина без индекса относится к перегретому пару.
Процесс парообразования при более высоком давлении p1 > p0 можно отметить, что точка a, изображающая начальное состояние воды при температуре 0 °С и новом давлении, остается практически на той же вертикали, так как удельный объем воды почти не зависит от давления.
Точка b′ (состояние воды при температуре насыщения) смещается вправо на p, v-диаграмме и поднимается вверх на T,s-диаграмме. Это потому, что с увеличением давления увеличивается температура насыщения и, следовательно, удельный объем воды.
Точка c′ (состояние сухого насыщенного пара) смещается влево, т. к. с увеличением давления удельный объем пара уменьшается, несмотря на увеличение температуры.
Соединение множества точек b и c при различных давлениях дает нижнюю и верхнюю пограничные кривые ak и kc. Из p, v-диаграммы видно, что по мере увеличения давления разность удельных объемов v″ и v′ уменьшается и при некотором давлении становится равной нулю. В этой точке, называемой критической, сходятся пограничные кривые ak и kc. Состояние, соответствующее точке k, называется критическим. Оно характеризуется тем, что при нем пар и вода имеют одинаковые удельные объемы и не отличаются по свойствам друг от друга. Область, лежащая в криволинейном треугольнике bkc (в p, v-диаграмме), соответствует влажному насыщенному пару.
Состояние перегретого пара изображается точками, лежащими над верхней пограничной кривой kc.
На T, s-диаграмме площадь 0abs′ соответствует количеству теплоты, необходимого для нагрева жидкой воды до температуры насыщения.
Количество подведенной теплоты, Дж/кг, равное теплоте парообразования r, выражается площадью s′bcs, и для нее имеет место соотношение:
Количество подведенной теплоты в процессе перегрева водяного пара изображается площадью s″cds.
На T, s-диаграмме видно, что по мере увеличения давления теплота парообразования уменьшается и в критической точке становиться равной нулю.
Обычно T, s-диаграмма применяется при теоретических исследованиях, так как практическое использование ее сильно затрудняется тем, что количества теплоты выражаются площадями криволинейных фигур.
По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.
Видео:Насыщенный и ненасыщенный пар. Влажность воздуха. 10 класс.Скачать
Состояния водяного пара
Изохорный процесс. В изохорном процессе при подводе теплоты к влажному пару увеличивается его давление и температура. При v = const степень сухости с уменьшением температуры может как убывать, так и возрастать. Если начальное состояние вещества находится вблизи кривой х = 0, то с уменьшением температуры при v = const степень сухости увеличивается. Если начальное состояние вещества находится вблизи кривой x = 1, то с уменьшением температуры степень сухости также уменьшается. В изохорном процессе внешняя работа равна нулю. Подведенное количество теплоты расходуется на изменение удельной внутренней энергии рабочего тела:
Если удельный объем v процесса меньше объема сухого насыщенного пара конечного состояния, то в конце процесса пар влажный; если , то пар перегретый. Степень сухости влажного пара можно определить по формуле
, откуда
На pv-диаграмме изохорный процесс изображается отрезком прямой, параллельной оси ординат (рис. 8.4-а), на Ts-диаграмме процесс изображается кривой линией (рис. 8.4-б). В области влажного пара изотропа направлена выпуклостью вверх, а в области перегретого пара – вниз. На is-диаграмме изохора изображается кривой, направленной выпуклостью вниз (рис. 8.4 –в).
Рис. 8.4. Изохорный процесс водяного пара
Изобарный процесс. На pv-диаграмме изобарный процесс изображается отрезком горизонтально прямой, который в области влажного пара изображает и изотермический процесс одновременно (рис. 8.5–а). На Ts-диаграмме в области влажного пара изобара изображается прямой горизонтальной линией, а в области перегретого пара – кривой, обращенной выпуклостью вниз (рис. 8.5–б). На is-диаграмме изобара в области насыщенного пара представляется прямой линией, пересекающей пограничные кривые жидкости и пара. При подводе теплоты к влажному пару степень его сухости увеличивается и он (при постоянной температуре) переходит в сухой, а при дальнейшем подводе теплоты – в перегретый пар. Изобара в области перегретого пара представляет собой кривую, направленную выпуклостью вниз (рис. 8.5-в).
Рис. 8.5. Изобарный процесс водяного пара
Изменение удельной внутренней энергии пара Du = u2 – u1
В том случае, когда q задано и требуется найти параметры второй точки, лежащей в области двухфазных состояний, применяется формула для энтальпий влажного пара
,
откуда находится степень сухости х2, зная которую можно легко найти остальные параметры.
Изотермический процесс. На pv-диаграмме в области влажного пара изотермический процесс изображается горизонтальной прямой. Для насыщенного пара этот процесс совпадает и изобарным. В области перегрева давление пара понижается, а процесс изображается кривой с выпуклостью вниз к оси абсцисс (рис. 8.6-а).
На Ts-диаграмме изотермический процесс изображается отрезком горизонтали (рис. 8.6-б).
На is-диаграмме в области влажного пара изотерма совпадает с изобарой и является прямой наклонной линией. В области перегретого пара изотерма изображается выпуклостью вверх (рис. 8.6-в).
Удельная энергия водяного пара в отличие от внутренней энергии идеального газа изменяется вследствие изменения потенциальной составляющей, поэтому при T = const
Подведенное удельное количество теплоты в процессе
Внешняя работа определяется из первого закона термодинамики:
Рис. 8.6. Изотермический процесс водяного пара
Адиабатный процесс. На pv-диаграмме обратимый адиабатный процесс изображается некоторой кривой (рис. 8.7-а).
Адиабатный процесс совершается без подвода и отвода теплоты, и энтропия рабочего тела при обратимом процессе остается постоянной величиной: s = const. Поэтому на is— и Ts-диаграммах адиабаты изображаются вертикальными прямыми (рис. 8.7-б, в). При адиабатном расширении давление и температура пара уменьшаются; перегретый пар переходит в сухой, а затем во влажный пар. Из условий постоянства энтропий возможно определение конечных параметров пара, если известны параметры начального и один параметр конечного состояний.
Удельная работа в адиабатном процессе определяется из уравнения
Изменение удельной внутренней энергии
Рис. 8.7. Адиабатный процесс водяного пара
Пример 8.1.Определить параметры влажного насыщенного водяного пара при давлении 2,0 МПа и степени сухости .
Р е ш е н и е. По таблицам водяного пара или по диаграмме находим параметры кипящей воды и сухого насыщенного пара при МПа:
°С; кДж/кг; м 3 /кг;
м 3 /кг; кДж/кг; кДж/кг;
кДж/(кг×К); кДж/(кг×К).
По этим данным определяем параметры заданного состояния
м 3 /кг;
кДж/кг;
Кдж/(кг×К).
Пример 8.2.Определить состояние пара, если дано:
1) МПа и м 3 /кг; 2) МПа и °С.
Р е ш е н и е. 1. При МПа объем сухого пара равен м 3 /кг, поэтому пар с объемом м 3 /кг будет влажным со степенью сухости
м 3 /кг.
2. При МПа температура насыщенного пара равна °С. Так как заданная температура пара °С выше температуры насыщения, то, очевидно, пар будет перегретым.
Пример 8.3.Определить состояние водяного пара при давлении 1,5 МПа, если на его получение из воды с температурой 0°Сбыло затрачено 2400 кДж/кг теплоты.
Р е ш е н и е. Так как энтальпия сухого пара при давлении 1,5 МПа равна кДж/кг (считая, что при 0°С ), энтальпия полученного пара считаем равной кДж/кг. Этот пар влажный, так как кДж/кг.
Степень сухости определяем из уравнения
.
Пример 8.4.Определить с помощью таблиц конечное давление, степень сухости и отведенное количество теплоты, если в закрытом сосуде объемом 2 м 3 сухой насыщенный пар охлаждается от начальной температуры °С до конечной температуры °С.
Р е ш е н и е. Начальное давление пара при равно р1 =
= 1,0 МПа. Конечное давление пара при °С равно р2 = 0,018 МПа. Пи постоянном объеме м 3 /кг, кДж/кг.
Степень сухости в конце процесса
.
Удельное количество теплоты, отведенное в изохорном процессе, будет равно
, где =
кДж/кг. Тогда получим:
= кДж/кг.
Так как в процессе участвует 2 м 3 паа, масса которого кг, то отведенное количество теплоты будет равно
кДж.
Пример 8.5.Водяной пар массой 1 кг пи давлении МПа и степени сухости нагревается пи постоянном давлении до 300 °С. Определить с помощью таблиц и диаграммы теплоту в процессе, работу расширения и изменение внутренней энергии пара.
Р е ш е н и е. Начальная удельная энтальпия
кДж/кг.
Конечная удельная энтальпия по диаграмме составляет
кДж/кг, а удельное количество теплоты
кДж/кг.
Удельная работа пара равна
кДж/кг,
изменение внутренней энергии
кДж/кг.
Пример 8.6.Определить количество теплоты, сообщаемое пару, изменение внутренней энергии и работу расширения, если пар с температурой 300°С расширяется по изотерме от давления 1,0 МПа до давления 0,1 МПа.
Р е ш е н и е. Подводимое количество теплоты определим по диаграмме, или с помощью таблиц состояния водяного пара:
кДж/кг.
Изменение внутренней энергии пара:
кДж.
Внутренняя энергия пара (как реального газа) есть функция не только температуры, но и объема.
Удельная работа расширения
кДж/кг.
Видео:Влажность. Всё, что нужно знать про водяной пар для ЕГЭ 2024 по физикеСкачать
Водяной пар
Общие положения. Определение параметров состояния водяного пара. Pv — Тs — и hs – диаграммы состояния водяного пара. Процесс парообразования в паровых диаграммах.
Процесс парообразования. Основные понятия и определения. Рассмотрим процесс получения пара. Для этого 1 кг воды при температуре 0 °С поместим в цилиндр с подвижным поршнем. Приложим к поршню извне некоторую постоянную силу Р. Тогда при площади поршня F давление будет постоянным и равным p=P/F. Изобразим процесс парообразования, т. е. превращения вещества из жидкого состояния в газообразное, в р,v-диаграмме
Начальное состояние воды, находящейся под давлением р и имеющей температуру 0°С, изобразится на диаграмме точкой a0. При подводе теплоты к воде ее температура постепенно повышается до тех пор, пока не достигнет температуры кипения ts, соответствующей данному давлению. При этом удельный объем жидкости сначала уменьшается, достигает минимального значения при t=4°С, а затем начинает возрастать. (Такой аномалией — увеличением плотности при нагревании в некотором диапазоне температур — обладают немногие жидкости. У большинства жидкостей удельный объем при нагревании увеличивается монотонно). Состояние жидкости, доведенной до температуры кипения, изображается на диаграмме точкой а’.
При дальнейшем подводе теплоты начинается кипение воды с сильным увеличением объема. В цилиндре теперь находится двухфазная среда — смесь воды и пара, называемая влажным насыщенным паром. По мере подвода теплоты количество жидкой фазы уменьшается, а паровой — растет. Температура смеси при этом остается неизменной и равной ts, так как вся теплота расходуется на испарение жидкой фазы. Следовательно — процесс парообразования на этой стадии является изобарно-изотермическим. Наконец, последняя капля воды превращается в пар, и цилиндр оказывается заполненным только паром, который называется сухим насыщенным. Состояние его изображается точкой а».
Рисунок 1 — р-v-диаграмма водяного пара
Насыщенным называется пар, находящийся в термическом и динамическим равновесии с жидкостью, из которой он образуется. Динамическое равновесие заключается в том, что количество молекул, вылетающих из воды в паровое пространство, равно количеству молекул, конденсирующихся на ее поверхности. В паровом пространстве при этом равновесном состоянии находится максимально возможное при данной температуре число молекул. При увеличении температуры количество молекул, обладающих энергией, достаточной для вылета в паровое пространство, увеличивается. Равновесие восстанавливается за счет возрастания давления пара, которое ведет к увеличению его плотности и, следовательно, количества молекул, в единицу времени конденсирующихся на поверхности воды. Отсюда следует, что давление насыщенного пара является монотонно возрастающей функцией его температуры, или, что то же самое, температура насыщенного пара есть монотонно возрастающая функция его давления.
При увеличении объема над поверхностью жидкости, имеющей температуру насыщения, некоторое количество жидкости переходит в пар, при уменьшении объема «излишний» пар снова переходит в жидкость, но в обоих случаях давление пара остается постоянным.
Насыщенный пар, в котором отсутствуют взвешенные частицы жидкой фазы, называется сухим насыщенным паром. Его удельный объем и температура являются функциями давления. Поэтому состояние сухого пара можно задать любым из параметров — давлением, удельным объемом или температурой.
Двухфазная смесь, представляющая собой пар со взвешенными в нем капельками жидкости, называется влажным насыщенным паром. Массовая доля сухого насыщенного пара во влажном называется степенью сухости пара и обозначается буквой х. Массовая доля кипящей воды во влажном паре, равная 1-х, называется степенью влажности. Для кипящей жидкости х=0, а для сухого насыщенного пара х=1. Состояние влажного пара характеризуется двумя параметрами: давлением (или температурой насыщения ts, определяющей это давление) и степенью сухости пара.
При сообщении сухому пару теплоты при том же давлении его температура будет увеличиваться, пар будет перегреваться. Точка а изображает состояние перегретого пара ив зависимости от температуры пара может лежать на разных расстояниях от точки а». Таким образом, перегретым называется пар, температура которого превышает температуру насыщенного пара того же давления.
Так как удельный объем перегретого пара при том же давлении больше, чем насыщенного, то в единице объема перегретого пара содержится меньшее количество молекул, значит, он обладает меньшей плотностью. Состояние перегретого пара, как и любого газа, определяется двумя любыми независимыми параметрами.
Если рассмотреть процесс парообразования при более высоком давлении, то можно заметить следующие изменения. Точка a0, соответствующая состоянию 1 кг воды при 0 °С и новом давлении, остается почти на той же вертикали, так как вода практически несжимаема. Точка а’ смещается вправо, ибо с ростом давления увеличивается температура кипения, а жидкость при повышении температуры расширяется. Что же касается пара (точка а»), то, несмотря на увеличение температуры кипения, удельный объем пара все-таки падает из-за более сильного влияния растущего давления.
Поскольку удельный объем жидкости растет, а пара падает, то при постоянном увеличении давления мы достигнем такой точки, в которой удельные объемы жидкости и пара сравняются. Эта точка называется критической. В критической точке различия между жидкостью и паром исчезают. Для воды параметры критической точки К составляют: ркр=221,29·105 Па; tкр = 374,15 °С; vкр = 0,00326 м3/кг.
Критическая температура — это максимально возможная температура сосуществования двух фаз: жидкости и насыщенного пара. При температурах, больших критической, возможно существование только одной фазы. Название этой фазы (жидкость или перегретый пар) в какой-то степени условно и определяется обычно ее температурой. Все газы являются сильно перегретыми сверх Tкр парами. Чем выше температура перегрева (при данном давлении), тем ближе пар по своим свойствам к идеальному газу.
Наименьшим давлением, при котором еще возможно равновесие воды и насыщенного пара, является давление, соответствующее тройной точке. Под последней понимается то единственное состояние, в котором могут одновременно находиться в равновесии пар, вода и лед (точка А’ на рисунке). Параметры тройной точки для воды: р0 = 611 Па; t0 = 0,01 °С; v0=0,00100 м3/кг. Процесс парообразования, происходящий при абсолютном давлении р0=611 Па, показан на диаграмме изобарой А’А», которая практически совпадает с осью абсцисс. При более низких давлениях пар может сосуществовать лишь в равновесии со льдом. Процесс образования пара непосредственно из льда называется сублимацией.
Если теперь соединить одноименные точки плавными кривыми, то получим нулевую изотерму I, каждая точка которой соответствует состоянию 1 кг воды при 0°С и давлении р, нижнюю пограничную кривую II, представляющую зависимость от давления удельного объема жидкости при температуре кипения, и верхнюю пограничную кривую III, дающую зависимость удельного объема сухого насыщенного пара от давления.
Все точки горизонталей между кривыми II и III соответствуют состояниям влажного насыщенного пара, точки кривой II определяют состояние кипящей воды, точки кривой III — состояния сухого насыщенного пара. Влево от кривой II до нулевой изотермы лежит область некипящей однофазной жидкости, вправо от кривой III — область перегретого пара. Таким образом, кривые II и III определяют область насыщенного пара, отделяя ее от области воды и перегретого пара, и поэтому называются пограничными. Выше точки К, где пограничных кривых нет, находится область однофазных состояний, в которой нельзя провести четкой границы между жидкостью и паром.
Определение параметров воды и пара. Термодинамические параметры кипящей воды и сухого насыщенного пара берутся из таблиц теплофизических свойств воды и водяного пара. В этих таблицах термодинамические величины со штрихом относятся к воде, нагретой до температуры кипения, а величины с двумя штрихами — к сухому насыщенному пару.
Поскольку для изобарного процесса подведенная к жидкости теплота , то, применив это соотношение к процессу а’а», получим
.
Величина r называется теплотой парообразования и определяет количество теплоты, необходимое для превращения одного килограмма воды в сухой насыщенный пар той же температуры.
Приращение энтропии в процессе парообразования определяется формулой
.
За нулевое состояние, от которого отсчитываются величины s‘, принято состояние воды в тройной точке. Так как состояние кипящей воды и сухого насыщенного пара определяется только одним параметром, то по известному давлению или температуре из таблиц воды и водяного пара берутся значения v‘, v» , h‘, h» ,s‘, s«, r.
Удельный объем vx, энтропия sx и энтальпия hx влажного насыщенного пара определяются по правилу аддитивности. Поскольку в 1 кг влажного пара содержится x кг сухого и кг кипящей воды, то
.
;
;
Непосредственно из таблиц взять параметры влажного пара нельзя. Их определяют по приведенным выше формулам по заданному давлению (или температуре) и степени сухости.
Однофазные состояния некипящей воды и перегретого пара задаются двумя параметрами. По заданным давлению и температуре из таблиц воды и перегретого пара находят значения v, h, s.
Т — s-диаграмма водяного пара. Для исследования различных процессов с водяным паром кроме таблиц используется Т — s-диаграмма. Она строится путем переноса числовых данных таблиц водяного пара в Т — s-координаты.
Рисунок 2 — T — s-диаграмма водяного пара
Состояние воды в тройной точке (s0 = 0; T0 = 273,16 К) изображается в диаграмме точкой А’. Откладывая на диаграмме для разных температур значения s‘ и s«, получим нижнюю и верхнюю пограничные кривые. Влево от нижней пограничной кривой располагается область жидкости, между пограничными кривыми — двухфазная область влажного насыщенного пара, вправо и вверх от верхней пограничной кривой — область перегретого пара.
На диаграмму наносят изобары, изохоры и линии постоянной степени сухости, для чего каждую изобару а’а» делят на одинаковое число частей и соединяют соответствующие точки линиями x = const. Область диаграммы, лежащая ниже нулевой изотермы, отвечает различным состояниям смеси пар+лед.
h— s-диаграмма водяного пара. Если за независимые параметры, определяющие состояние рабочего тела, принять энтропию s и энтальпию h, то каждое состояние можно изобразить точкой на h-s-диаграмме.
На рисунке 6.3 изображена h, s-диаграмма для водяного пара, которая строится путем переноса числовых данных таблиц водяного пара в h—s-координаты.
За начало координат принято состояние воды в тройной точке. Откладывая на диаграмме для различных давлений значения s‘ и h» для воды при температуре, кипения, а также s« и h« для сухого насыщенного пара, получаем нижнюю и верхнюю пограничные кривые.
Рисунок 3 — h-s-диаграмма водяного пара
Изобары в двухфазной области влажного пара представляют собой пучок расходящихся прямых. Действительно, в процессе р=const , или , т. е. тангенс угла наклона изобары в h, s-координатах численно равен абсолютной температуре данного состояния. Так как в области насыщения изобара совпадает с изотермой, тангенс угла наклона постоянен и изобара является прямой. Чем выше давление насыщения, тем выше температура, тем больше тангенс угла наклона изобары, поэтому в области насыщения прямые р = const расходятся. Чем больше давление, тем выше лежит изобара. Критическая точка К лежит не на вершине, как это было в р — v— и Т — s-диаграммах, а на левом склоне пограничной кривой.
В области перегрева температура пара (при постоянном давлении) растет с увеличением s примерно по логарифмической кривой и крутизна изобары увеличивается. Аналогичный характер имеют изобары и в области воды, но они идут так близко от пограничной кривой, что практически сливаются с ней.
При низких давлениях и относительно высоких температурах перегретый пар по своим свойствам близок к идеальному газу. Так как в изотермическом процессе энтальпия идеального газа не изменяется, изотермы сильно перегретого пара идут горизонтально. При приближение к области насыщения, т. е. к верхней пограничной кривой, свойства перегретого пара значительно отклоняются от свойств идеального газа и изотермы искривляются.
В h— s-диаграмме водяного пара нанесены также линии v=const, идущие круче изобар.
Обычно всю диаграмму не выполняют, а строят только ее верхнюю часть, наиболее употребительную в практике расчетов. Это дает возможность изображать ее в более крупном масштабе.
Для любой точки на этой диаграмме можно найти р, v, t, h, s, x. Большое достоинство диаграммы состоит в том, что количество теплоты в изобарном процессе равно разности ординат конечной и начальной точек процесса и изображается отрезком вертикальной прямой, а не площадью как в Т-s-диаграмме, поэтому h—s-диаграмма исключительно широко используется при проведении тепловых расчетов.
Основные термодинамические процессы водяного пара. Для анализа работы паросиловых установок существенное значение имеют изохорный, изобарный, изотермический и адиабатный процессы. Расчет этих процессов можно выполнить либо с помощью таблицы воды и водяного пара, либо с помощью h, s-диаграммы. Первый способ более точен, но второй более прост и нагляден.
Общий метод расчета по h—s-диаграмме состоит в следующем. По известным параметрам наносится начальное состояние рабочего тела, затем проводится линия процесса и определяются его параметры в конечном состоянии. Далее вычисляется изменение внутренней энергии, определяются количества теплоты и работы в заданном процессе.
Изохорный процесс. Из диаграммы на рисунке видно, что нагреванием при постоянном объеме влажный пар можно перевести в сухой насыщенный и перегретый. Охлаждением его можно сконденсировать, но не до конца, так как при каком угодно низком давлении над жидкостью всегда находится некоторое количество насыщенного пара. Это означает, что изохора не пересекает нижнюю пограничную кривую.
Рисунок 4 — Изохорный процесс водяного пара.
Изменение внутренней энергии водного пара при v=const
.
Данная формула справедлива и для всех без исключения остальных термодинамических процессов.
В изохорном процессе работа 1=0, поэтому подведенная теплота расходуется (в соответствии с первым законом термодинамики) на увеличение внутренней энергии пара:
Изобарный процесс. При подводе теплоты к влажному насыщенному пару его степень сухости увеличивается и он (при постоянной температуре) переходит в сухой, а при дальнейшем подводе теплоты — в перегретый пар (температура пара при этом растет). При отводе теплоты влажный пар конденсируется при Ts= const.
Полученная в процессе теплота равна разности энтальпий:
.
Работа процесса подсчитывается по формуле:
.
Рисунок 5 — Изобарный процесс водяного пара
Изотермический процесс. Внутренняя энергия водяного пара в процессе T = const не остается постоянной (как у идеального газа), так как изменяется ее потенциальная составляющая. Величина находится по формуле .
Количество полученной в изотермическом процессе теплоты равно
.
Работа расширения определяется из первого закона термодинамики:
.
Рисунок 6 — Изотермический процесс водяного пара
Адиабатный процесс. При адиабатном расширении давление и температура пара уменьшаются, и перегретый пар становится сначала сухим, а затем влажным. Работа адиабатного процесса определяется выражением
.
Рисунок 7 — Адиабатный процесс водяного пара
Уравнение состояния реальных газов
В реальных газах в отличие от идеальных существенны силы межмолекулярных взаимодействий (силы притяжения, когда молекулы находятся на значительном расстоянии, и силы отталкивания при достаточном сближении их друг с другом) и нельзя пренебречь собственным объемом молекул.
Наличие межмолекулярных сил отталкивания приводит к тому, что молекулы могут сближаться между собой только до некоторого минимального расстояния. Поэтому можно считать, что свободный для движения молекул объем будет равен , где b — тот наименьший объем, до которого можно сжать газ. В соответствии с этим длина свободного пробега молекул уменьшается и число ударов о стенку в единицу времени, а следовательно, и давление увеличивается по сравнению с идеальным газом в отношении , т. е.
.
Силы притяжения действуют в том же направлении, что и внешнее давление, и приводят к возникновению молекулярного (или внутреннего) давления. Сила молекулярного притяжения каких-либо двух малых частей газа пропорциональна произведению числа молекул в каждой из этих частей, т. е. квадрату плотности, поэтому молекулярное давление обратно пропорционально квадрату удельного объема газа: рмол = а/v2, где а — коэффициент пропорциональности, зависящий от природы газа.
Отсюда получаем уравнение Ван-дер-Ваальса (1873 г.):
,
или
.
При больших удельных объемах и сравнительно невысоких давлениях реального газа уравнение Ван-дер-Ваальса практически вырождается в уравнение состояния идеального газа Клапейрона, ибо величина a/v2
(по сравнению с p) и b (по сравнению с v) становятся пренебрежимо малыми.
Уравнение Ван-дер-Ваальса с качественной стороны достаточно хорошо описывает свойства реального газа, но результаты численных расчетов не всегда согласуются с экспериментальными данными. В ряде случаев эти отклонения объясняются склонностью молекул реального газа к ассоциации в отдельные группы, состоящие из двух, трех и более молекул. Ассоциация происходит вследствие несимметричности внешнего электрического поля молекул. Образовавшиеся комплексы ведут себя как самостоятельные нестабильные частицы. При столкновениях они распадаются, затем вновь объединяются уже с другими молекулами и т. д. По мере повышения температуры концентрация комплексов с большим числом молекул быстро уменьшается, а доля одиночных молекул растет. Большую склонность к ассоциации проявляют полярные молекулы водяного пара.
📹 Видео
Урок 187. Испарение и конденсация. Насыщенный пар и его свойстваСкачать
Уравнение состояния идеального газа. 10 класс.Скачать
Олимпиадная физика 2023 | Водяной пар, влажность - с ЛЕГКИМ паром!Скачать
Урок 189. Влажность воздуха. Абсолютная и относительная влажностьСкачать
Работа с диаграммой воды и водяного параСкачать
Забудьте всё что слышали про бензин! Это прорыв! Двигатель на нагретом бензопаре!Скачать
Парадокс сужающейся трубыСкачать
Олимпиадная физика. Насыщенный пар. ВлажностьСкачать
Насыщенный и ненасыщенный пар. Влажность воздуха. Практическая часть. 10 класс.Скачать
Термодинамические процессы водяного параСкачать
Интенсив "Физтех за месяц" | Влажность. Водяной парСкачать
Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать
Расщепление воды (пара). Обзор патентов RU165752U1, RU180441U1.Скачать
ОЛИМПИАДНАЯ ФИЗИКА Водяной пар Влажный воздухСкачать
Всё про влажность и водяной пар для ОГЭ 2023 по физикеСкачать
Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать