Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение

Свободные (затухающие) колебания в последовательном RLC-контуре.

Цель работы:наблюдение затухающих колебаний на экране осциллографа и экспериментальное определение характеристик колебаний и параметров контура.

Приборы и принадлежности:генератор прямоугольных импульсов (в блоке ГН1), цифровой осциллограф PicoScope 2203, стенд С-ЭМ01, соединительные провода.

Краткие теоретические сведения:

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решениеУравнение свободных колебаний в последовательном RLC –контуре (рис.1) может быть получено из второго правила Кирхгофа:

где Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение

Окончательно уравнение принимает вид

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение, (1)

где Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение

Решением уравнения (1) при малом затухании (b 2 2 ) является функция, описываемая уравнением

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение, (2)

где w-частота затухающих колебаний, b-коэффициент затухания, Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение— начальная фаза, Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение-максимальное напряжение на конденсаторе

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решениеПериод затухающих колебаний Т при малом затухании можно приближенно считать равным периоду незатухающих колебаний Т0

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение. (3)

Важной характеристикой затухающих колебаний является логарифмический декремент затухания Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение, характеризующий уменьшение амплитуды колебаний за один период

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение, (4)

где Uc(t)-амплитуда затухающих колебаний в момент времени t; Uc(t+T)- амплитуда затухающих колебаний через период в момент времени t+T.

При малом затухании (w » wо) для l можно использовать формулу

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение, (5)

где Rконт— общее активное сопротивление контура.

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение, (6)

где R – внешнее сопротивление, r – внутренне сопротивление источника тока, Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение— активное сопротивление катушки.

Критическое сопротивление контура, при котором колебательный процесс переходит в апериодический, может быть найдено из условия bкр=wо.

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение. (7)

Добротность контура Q равна

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение. (8)

Видео:RLC контур - свободные колебанияСкачать

RLC контур - свободные колебания

Затухающие колебания в контуре и их уравнение

Существуют колебания в системе без источника энергии, называемые затухающими. Рассмотрим реальный контур с сопротивлением не равным нулю. Для примера используют контур с включенным сопротивлением R , с емкостью конденсатора C , с катушкой индуктивности L , изображенный на рисунке 1 . Колебания, происходящие в нем, — затухающие.

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение

Именно наличие сопротивления становится главной причиной их затухания. Данный процесс возможен посредствам потерь энергии на выделение джоулева тепла. Аналог сопротивления в механике – действие сил трения.

Видео:Урок 343. Затухающие колебания (часть 1)Скачать

Урок 343. Затухающие колебания (часть 1)

Характеристики затухающих колебаний

Затухающие колебания характеризуют коэффициентом затухания β . Применив второй закон Ньютона, получим:

m a = — k x — y v , d 2 x d t 2 + r m d x d t + k m x = 0 , ω 0 2 = k m , β = r 2 m .

Из записи видно, что β действительно является характеристикой контура. Реже вместо β применяют декремент затухания δ ,

Значение a ( t ) является амплитудой заряда, силы тока и так далее, δ равняется количеству колебаний, а N e — период времени уменьшения амплитуды в e раз.

Для R L C контура применима формула с ω частотой.

При небольшой δ ≪ 1 говорят, что β ≪ ω 0 ω 0 = 1 L C — собственная частота, отсюда ω ≈ ω 0 .

При рассмотрении затухающих колебаний последовательного контура колебательный контур характеризуется добротностью Q :

Q = 1 R L C = ω 0 L R , где R , L и C — сопротивление, индуктивность, емкость, а ω 0 — частота резонанса. Выражение L C называют характеристическим или волновым сопротивлением. Для параллельного контура формула примет вид:

Q = R L C = R ω 0 L .

R является входным сопротивлением параллельного контура.

Эквивалентное определение добротности применяется при слабых затуханиях. Его выражают через отношение энергий:

Q = ω 0 W P d = 2 π f 0 W P d , называемое общей формулой.

Видео:Урок 361. Вынужденные колебания в последовательном колебательном контуреСкачать

Урок 361. Вынужденные колебания в последовательном колебательном контуре

Уравнения затухающих колебаний

Рассмотрим рисунок 1 . Изменение заряда q на конденсаторе в таком контуре описывается дифференциальным уравнением:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Если t = 0 , то заряд конденсатора становится равным q 0 , и ток в цепи отсутствует.

Если R > 2 L C изменения заряда не относят к колебаниям, разряд называют апериодическим.

Значение сопротивления, при котором колебания превращаются в апериодический разряд конденсатора, критическое R k .

Функция изображается аналогично рисунку 2 .

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение

Записать закон убывания энергии, запасенной в контуре W ( t ) при W ( t = 0 ) = W 0 с затухающими колебаниями. Обозначить коэффициент затухания в контуре β , а собственную частоту — ω 0 .

Решение

Отправная точка решения – это применение формулы изменения заряда на конденсаторе в R L C — контуре:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Предположим, что при t = 0 , a ‘ 0 = 0 . Тогда применим выражение

Для нахождения I ( t ) :

I ( t ) = — ω 0 q 0 e ( — 2 β t ) sin ( ω t + α ) , где t g α = β ω .

Очевидно, что электрическая энергия W q запишется как:

W q = q 2 2 C = q 0 2 2 C e ( — 2 β t ) cos 2 ( ω t ) = W 0 e ( — 2 β t ) cos 2 ( ω t ) .

Тогда значение магнитной энергии контура W m равняется:

W m = L 2 ω 0 2 q 0 2 e ( — 2 β t ) sin 2 ω t + a = W 0 e — 2 β t sin 2 ω t + a .

Запись полной энергии будет иметь вид:

W = W q + W m = W 0 e ( — 2 β t ) ( cos 2 ( ω t ) + sin 2 ( ω t + a ) ) = = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + α ) .

Где sin α = β ω 0 .

Ответ: W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) .

Применив результат предыдущего примера, записать выражение для энергии, запасенной в контуре W ( t ) , при медленно затухающих колебаниях. Начертить график убывания энергии.

Решение

Если колебания в контуре затухают медленно, то:

Очевидно, выражение энергии, запасенной в контуре, вычислим из

W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) , предварительно преобразовав до W ( t ) = W 0 e ( — 2 β t ) .

Такое упрощение возможно по причине выполнения условия β ω 0 ≪ 1 , sin ( 2 ω t + a ) ≤ 1 , что означает β ω 0 sin ( 2 ω t + a ) ≪ 1 .

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение

Ответ: W ( t ) = W 0 e ( — 2 β t ) . Энергия в контуре убывает по экспоненте.

Видео:Урок 353. Колебательный контурСкачать

Урок 353. Колебательный контур

Затухающие колебания в контуре и их уравнение

Вы будете перенаправлены на Автор24

Видео:Свободные электромагнитные колебания. 11 класс.Скачать

Свободные электромагнитные колебания. 11 класс.

Определение, характеристики затухающих колебаний

В реальном мире любые колебания в системе, где нет источника энергии, являются затухающими. Рассмотрим реальный контур, сопротивление которого отлично от нуля. Примером простейшей системы, которую рассматривают в таком случае может служить контур включают сопротивление $(R)$, конденсатор емкостью $C$, катушку индуктивности $L$, тогда такой контур имеет вид указанный на рис.1. Колебания в таком контуре являются затухающими.

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение

Причиной затухания колебаний в таком контуре является наличие сопротивления. Его существование ведет к тому, что в контуре происходят потери энергии на выделение джоулева тепла. В механике аналогом сопротивления являются силы трения.

Затухающие колебания характеризуют коэффициентом затухания ($beta $), равным:

Из выражения (1) видно, что $beta $ является характеристикой контура. Иногда для характеристики затухания используют логарифмический декремент затухания ($delta $), который равен:

где $aleft(tright)$- амплитуда какой — либо величины (заряда, силы тока и т.д.). $delta $ равен количеству колебаний ($N_e$) за время, в течение которого амплитуда уменьшается в e раз:

Для $RLC$ контура:

где $omega $ — частота.

Если затухание небольшое ($delta ll 1$), то полагают, что $beta ll _0$ ($_0=sqrt<frac>-собственнная частота$), тогда $omega approx _0$. В таком случае:

Рассматривая затухающие колебания, колебательный контур характеризуют его добротностью ($O$). Он равен:

Для слабого затухания добротность можно выразить как:

Также при слабом затухании электрических колебаний добротность можно выразить через отношение энергий:

где $W$ — энергия контура, $triangle W$- уменьшение энергии контура за одно колебание.

Готовые работы на аналогичную тему

Видео:Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | ИнфоурокСкачать

Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | Инфоурок

Уравнение затухающих колебаний

Обратимся вновь к контуру, который изображен на рис.1. Изменение заряда ($q$) на конденсаторе в таком контуре описывается дифференциальным уравнением вида:

где $omega =sqrt<frac-frac> cdot beta =frac$. Амплитуда равна:

В том случае, если при $t=0$ заряд на конденсаторе равен $q_0$, тока в цепи нет, то для $A_0$ можно записать:

Начальная фаза колебаний ($_0$) равна:

При $R >2sqrt<frac>$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Сопротивление, при котором колебания превращаются в апериодический разряд конденсатора называется критическим ($R_k$). Величина $R_k$ определяют условием:

График функции (10) изображают как на рис.2.

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение

Задание: Запишите закон убывания энергии, запасенной в контуре $(W(t))$, если $W(t=0)=W_0,$ колебания являются затухающими. Коэффициент затухания колебаний в контуре равен $beta $. Собственная частота $_0. $

Решение:

В качестве отправной точки для решения задачи используем уравнение изменения заряда на конденсаторе в $RLC$ -контуре в виде:

в выражении (1.1) мы предположили, что при $t=0, <‘>_0=0$. Используя выражение:

Найдем $I(t)$, получим:

Следовательно, электрическая энергия контура ($W_q$) имеет вид:

Магнитная энергия контура ($W_m$) равна:

Полная энергия равна:

Задание: Используя результат Примера 1, запишите выражение для энергии, запасенной в контуре ($W(t)$), если колебания затухают в контуре очень медленно. Изобразите график убывания энергии запасенной в контуре.

Решение:

Если колебания в контуре затухают медленно, то это значит:

Следовательно, выражение для энергии, запасенной в контуре:

можно преобразовать к виду:

Уравнение собственных затухающих колебаний заряда тока в последовательном rlc контуре и его решение

Ответ: $Wleft(tright)=W_0e^$. Энергия контура убывает по экспоненте.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 26.04.2022

📺 Видео

Графические зависимости заряда и силы тока от времени в идеальном колебательном контуре. 11 класс.Скачать

Графические зависимости заряда и силы тока от времени в идеальном колебательном контуре. 11 класс.

Резонанс в колебательном контуреСкачать

Резонанс в колебательном контуре

Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)Скачать

Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)

Последовательное соединение RLC элементов в цепи синусоидального токаСкачать

Последовательное соединение RLC элементов в цепи синусоидального тока

Урок 355. Затухающие электромагнитные колебания.Скачать

Урок 355. Затухающие электромагнитные колебания.

11 класс урок №5 Свободные электромагнитные колебанияСкачать

11  класс урок №5  Свободные электромагнитные колебания

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)Скачать

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)

Решение задач по теме "Электромагнитные колебания в контуре"Скачать

Решение задач по теме "Электромагнитные колебания в контуре"

Колебательный контур | ЕГЭ Физика | Николай НьютонСкачать

Колебательный контур | ЕГЭ Физика | Николай Ньютон

Что такое РЕЗОНАНС НАПРЯЖЕНИЙ | САМОЕ ПОНЯТНОЕ объяснениеСкачать

Что такое РЕЗОНАНС НАПРЯЖЕНИЙ | САМОЕ ПОНЯТНОЕ объяснение

Вынужденные электромагнитные колебания. Автоколебания. 11 класс.Скачать

Вынужденные электромагнитные колебания. Автоколебания. 11 класс.

Урок 347. Вынужденные колебания. Резонанс (часть 1)Скачать

Урок 347. Вынужденные колебания. Резонанс (часть 1)

Колебательный контур. Получение электромагнитных колебаний | Физика 9 класс #45 | ИнфоурокСкачать

Колебательный контур. Получение электромагнитных колебаний | Физика 9 класс #45 | Инфоурок

Билеты №45 "Вынужденные колебания в линейных системах"Скачать

Билеты №45 "Вынужденные колебания в линейных системах"
Поделиться или сохранить к себе: