Уравнение смещения для альфа распада

Альфа-распад. Бета-распад. Ядерные реакции

Ядра большинства атомов – это довольно устойчивые образования. Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий: (88^Rarightarrow86^Rn+2^4) He. Чтобы понимать смысл написанного выражения, он изучил тему о массовом и зарядовом числе ядра атома.

Удалось установить, что основные виды радиоактивного распада – альфа и бета-распад – происходят согласно следующему правилу смещения.

Альфа-распад

При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов (Z) и нейтронов (N) в атомном ядре оно превращается в вещество с количеством протонов (Z-2) и количеством нейтронов (N-2) и, соответственно, атомной массой (A-4) . То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Пример α-распада: (92^Urightarrow90^Th+2^4) He.

Альфа-распад – это внутриядерный процесс. В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон ( (beta) -частица). В результате распада одного нейтрона на протон, электрон и антинейтрино состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример (beta) -распада: (19^Krightarrow20^Ca+_ ^0e+_0 ^0v) .

Бета-распад – это внутринуклонный процесс. Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад

Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад – это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях, либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни – менее наносекунды.

Также существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие виды радиоактивности это альфа, бета и гамма-распад.

Можно описать и так, что альфа-распад – это вид радиоактивного распада ядра, в результате которого происходит испускание дважды магического ядра гелия (^4) He – альфа-частицы. При этом массовое число ядра уменьшается на 4, а атомный номер – на (2) . Альфа-распад наблюдается только у тяжелых ядер (атомный номер должен быть больше 82, массовое число должно быть больше (200) ). Альфа-частица испытывает туннельный переход через кулоновский барьер в ядре, поэтому альфа-распад является существенно квантовым процессом. Поскольку вероятность туннельного эффекта зависит от высоты барьера экспоненциально, период полураспада альфа-активных ядер экспоненциально растет с уменьшением энергии альфа-частицы (этот факт составляет содержание закона Гейгера-Нэттола). При энергии альфа-частицы меньше (2) МэВ время жизни альфа-активных ядер существенно превышает время существования Вселенной. Поэтому, хотя большинство природных изотопов тяжелее церия в принципе способны распадаться по этому каналу, лишь для немногих из них такой распад действительно зафиксирован.

Скорость вылета альфа-частицы составляет от 9400 км/с (изотоп неодима (^) Nd) до (23700) км/с (у изотопа полония (^) Po). В общем виде формула альфа-распада выглядит следующем образом:

Пример альфа-распада для изотопа (^U) :

Альфа-распад может рассматриваться как предельный случай кластерного распада.

Впервые альфа-распад был идентифицирован британским физиком Эрнестом Резерфордом в 1899 году. Одновременно в Париже французский физик Пол Виллард проводил аналогичные эксперименты, но не успел разделить излучения раньше Резерфорда. Первую количественную теорию альфа-распада разработал советский и американский физик Георгий Гамов.

Какой вид иони­зи­ру­ю­щих из­лу­че­ний из пе­ре­чис­лен­ных ниже наи­бо­лее опа­сен при внеш­нем об­лу­че­нии че­ло­ве­ка?

Де­тек­тор ра­дио­ак­тив­ных из­лу­че­ний по­ме­щен в за­кры­тую кар­тон­ную ко­роб­ку с тол­щи­ной сте­нок (approx1) мм. Какие из­лу­че­ния он может за­ре­ги­стри­ро­вать?

Какой заряд (Z) и мас­со­вое число А будет иметь ядро эле­мен­та, по­лу­чив­ше­го­ся из ядра изо­то­па (_^) Po после од­но­го (alpha) -рас­па­да и од­но­го элек­трон­но­го (beta) -рас­па­да?

(alpha) -из­лу­че­ние – это

В результате одного (alpha) -распада и одного (beta) -распада из радиоактивного изотопа лития (_3^8Li) образуется изотоп

Естественная радиоактивность – это

(alpha) -излучение представляет собой поток

Ядерная реакция имеет вид (x+_1^1H rightarrow _^Na+_2^4He) . Определите недостающий элемент.

Ядерная реакция имеет вид (_2^4He + _4^9Be rightarrow _6^C+x) . Определите недостающий продукт реакции.

Ядро бериллия (9^4) Ве сталкивается с частицей, при этом продуктом реакции оказались один нейтрон и ядро изотопа некоторого элемента. Определите этот элемент.

Каково массовое число ядра (X) в реакции (^_!Cm + ^_!He → X + 2^1_0n?)

Определите число (α) и (β) распадов при превращении ядра урана (_^!U) в ядро свинца (_^Pb) .

Определите массовое число и порядковый номер элемента, образовавшегося из урана (_^) U , если с ним произошло (3 alpha) -распада и (2 beta) -распада.

Определите массовое число ядра (X) в реакции деления урана.

Из приведенных реакций выберите те, которые соответствуют термоядерным.

Видео:Альфа-распадСкачать

Альфа-распад

Правило смещения при радиоактивном распаде

Уравнение смещения для альфа распада

Правило смещения при радиоактивном распаде в радиохимии и ядерной физике, которое также известно под названием закона Содди-Фаянса, представляет собой правило, определяющее превращение одного элемента в другой во время радиоактивного распада. Оно было изложено в 1913 году независимо двумя учеными: английским радиохимиком Фредериком Содди и американским физико-химиком с польскими корнями Казимиром Фаянсом.

Видео:Урок 223 (осн). Альфа- и бета-распад. Правила Содди.Скачать

Урок 223 (осн). Альфа- и бета-распад. Правила Содди.

Достижения Фредерика Содди в области радиоактивности

Уравнение смещения для альфа распада

Содди вместе с Резерфордом стоит у истоков открытия радиоактивных атомных превращений. Так, в 1903 году Содди открыл, что радий в процессе своего распада излучает ядра гелия. Также этот ученый показал, что атомы одного и того же химического элемента могут иметь различные массы, что привело его к разработке концепции изотопов. Содди установил правила смещения химических элементов во время альфа- и бета- радиоактивных распадов, что стало важным шагом в понимании взаимосвязи между семействами радиоактивных элементов.

В 1921 году Фредерик Содди был удостоен Нобелевской премии по химии за важные открытия в области физики радиоактивных элементов и за исследования природы изотопов.

Видео:альфа и бета распадСкачать

альфа и бета распад

Работы Казимира Фаянса

Уравнение смещения для альфа распада

Этот ученый провел важные исследования радиоактивности различных изотопов и разработал квантовую теорию электронной структуры молекул. В 1913 году одновременно с Фредериком Содди и независимо от него Фаянс открыл правила смещения, которые регулируют преобразование одних химических элементов в другие в процессе радиоактивных распадов. Также Фаянс открыл новый химический элемент — протактиний.

Видео:11 класс, 25 урок, Радиоактивность. Правила смещенияСкачать

11 класс, 25 урок, Радиоактивность. Правила смещения

Понятие радиоактивности

Уравнение смещения для альфа распада

Перед тем как рассмотреть законы радиоактивного распада и правила смещения, необходимо разобраться с понятием радиоактивности. В физике под этим словом понимают способность ядер некоторых химических элементов испускать излучение, обладающее следующими свойствами:

  • способность проникать в человеческие ткани, оказывая разрушающее действие;
  • способность ионизировать газы;
  • стимуляция процесса флюоресценции;
  • прохождение через различные твердые и жидкие тела.

Благодаря этим способностям обычно это излучение называют ионизирующим. Природа радиоактивного излучения может быть либо электромагнитной, например, рентгеновские лучи или гамма-излучение, либо носить корпускулярный характер, испускание ядер гелия, протонов, электронов, позитронов и других элементарных частиц.

Таким образом, радиоактивность — это феномен, наблюдаемый у нестабильных ядер атомов, которые спонтанно способны превращаться в ядра более стабильных элементов. Говоря простыми словами, нестабильный атом испускает радиоактивное излучение, чтобы стать стабильным.

Видео:Альфа-распадСкачать

Альфа-распад

Нестабильные атомные изотопы

Нестабильные изотопы, то есть атомы одного и того же химического элемента, которые обладают различной атомной массой, находятся в возбужденном состоянии. Это говорит о том, что они обладают повышенной энергией, которую стремятся отдать, чтобы перейти в равновесное состояние. Учитывая, что все энергии атома квантованы, то есть имеют дискретные значения, то и сам радиоактивный распад происходит за счет потери конкретной кинетической энергии.

Уравнение смещения для альфа распада

Нестабильный изотоп в процессе радиоактивного распада переходит в более стабильный, но это не значит, что новое образованное ядро не будет обладать радиоактивностью, оно также может распадаться. Ярким примером этого процесса является ядро урана-238, которое за несколько столетий испытывает ряд распадов, превращаясь, в конце концов, в атом свинца. Отметим, что в зависимости от вида изотопа, он спонтанно может распадаться, как через миллионные доли секунды, так и через миллиарды лет, например, тот же уран-238 имеет период полураспада (время, за которое половина ядер распадается) равный 4,468 млрд лет, в то же время для изотопа калия-35 этот период равен 178 миллисекундам.

Видео:Уравнения ядерных реакций для разных видов распада (видео 19)| Квантовая физика | ФизикаСкачать

Уравнения ядерных реакций для разных видов распада (видео 19)| Квантовая физика | Физика

Различные виды радиоактивности

Применение того или иного правила радиоактивного смещения зависит от типа радиоактивного распада, который испытывает конкретный элемент. В общем случае выделяют следующие виды радиоактивности:

  • альфа-распад;
  • бета-распад;
  • гамма-распад;
  • распад с испусканием свободных нейтронов.

Все эти виды радиоактивного распада (за исключением испускания свободных нейтронов) установил новозеландский физик Эрнест Резерфорд еще в начале XX века.

Уравнение смещения для альфа распада

Видео:Альфа и бета распад правила смещение Содди. Физика 9 классСкачать

Альфа и бета распад правила смещение Содди. Физика 9 класс

Корпускулярные виды распада

Альфа-распад связан с испусканием ядер гелия-4, то есть речь идет о корпускулярном излучении, частицы которого состоят из двух протонов и двух нейтронов. Это означает, что масса этих частиц равна 4 в атомных единицах массы (АЕМ), а электрический заряд равен +2 в единицах элементарного электрического заряда (1 элементарный заряд в системе СИ равен 1,602*10 − 19 Кл). Испущенное ядро гелия до распада входило в состав ядра нестабильного изотопа.

Природа бета-распада заключается в испускании электронов, которые имеют массу 1/1800 АЕМ и заряд -1. Ввиду отрицательного заряда электрона, этот распад называют бета-отрицательным. В отличие от альфа-частицы электрон не существовал до распада в атомном ядре, а образовался в результате превращения в протон нейтрона. Последний остался в ядре после распада, а электрон покинул атомное ядро.

Впоследствии был обнаружен бета-положительный распад, который заключается в испускании позитрона-античастицы электрона. Радиоактивный позитрон образуется в результате обратной реакции, чем электрон, то есть протон в ядре превращается в нейтрон, теряя при этом свой положительный заряд.

В ряде радиоактивных превращений одного ядра в другое происходит испускание нейтронов различных энергий. Как и протон, нейтрон имеет массу 1 АЕМ (если быть более точным, то нейтрон на 0,137% тяжелее протона) и обладает нулевым электрическим зарядом. Таким образом, при данном типе распада ядро-родитель теряет только 1 единицу своей массы.

Видео:Урок 467. Радиоактивные превращения. Правила смещения СоддиСкачать

Урок 467. Радиоактивные превращения. Правила смещения Содди

Гамма-распад

Гамма-распад в отличие от предыдущих видов распада имеет электромагнитную природу, то есть это излучение подобно рентгеновскому или видимому свету, однако, длина волны гамма-излучения намного меньше, чем у любой другой электромагнитной волны. Гамма-лучи не обладают массой покоя и зарядом. По сути, гамма-лучи — это лишняя энергия, которая существовала до распада в ядре атома, обуславливая его нестабильность. Химический элемент сохраняет свое положение в периодической таблице Д. И. Менделеева при гамма-распаде.

Уравнение смещения для альфа распада

Видео:ФИЗИКА 9 класс: Альфа, Бета распад | Решение задачСкачать

ФИЗИКА 9 класс: Альфа, Бета распад | Решение задач

Правила радиоактивного смещения

Пользуясь этими правилами, можно легко определить, какой химический элемент должен получиться из данного родительского изотопа при определенном виде радиоактивного распада. Поясним эти правила смещения в физике:

  • При альфа-распаде, поскольку ядро теряет 4 АЕМ массы и +2 единицы заряда, образуется химический элемент, стоящий на 2 позиции левее в периодической системе Д. И. Менделеева. Например, 92U 238 = 90Th 234 , здесь нижний индекс — заряд, верхний — масса ядра.
  • В случае бета-отрицательного распада заряд материнского ядра увеличивается на 1 единицу, при этом масса остается неизменной (масса электрона, испускаемого в процессе этого распада, составляет всего 0,06% от массы протона). В данном случае правило смещения равновесия гласит, что должен образоваться изотоп химического элемента, стоящий на одну клетку правее от материнского элемента в таблице Д. И. Менделеева. Например, 82Pb 212 = 83Bi 212 .
  • Правило смещения при бета-положительном распаде (излучение позитрона) гласит, что в результате этого процесса образуется химический элемент, который на 1 позицию стоит левее от материнского элемента, и имеет ту же массу ядра, что и он. Например, 7N 13 = 6C 13 .

Видео:Закон радиоактивного распада. Правила смещения при радиоактивном распаде. Видеоурок по физикеСкачать

Закон радиоактивного распада. Правила смещения при радиоактивном распаде. Видеоурок по физике

Строение атомного ядра. Типы радиоактивного распада (правило смещения).

Строение атомного ядра

В 1911 г. в результате исследований, проведенных Резерфордом по рассеянию α-частиц при прохождении через вещество, был открыт протон — ядро атома водорода, который обладает положительным электрическим зарядом, равным модулю заряда электрона.

Уравнение смещения для альфа распада

Заряд ядра атома

Английский физик Г. Мозли в 1913 г. предсказал, что заряд ядра атома q,=Ze, где е —элементарный электрический заряд; Z — порядковый номер элемента в таблице Менделеева, определяет число электронов в атоме. Химические свойства зависят только от зарядового числа. Немецкие ученые В. Боте и Г. Беккер, изучая реакции (1930),происходящие при облучении бериллия α-частицами, обнаружили новое излучение, обладающее очень большой проникающей способностью.

В 1932 г. английский физик Дж. Чэдвик выдвинул гипотезу: бериллиевые лучи состоят из нейтральных частиц, масса кото­рых близка к массе протона. Их назвали нейтронами.

Дальнейшие исследования показали, что нейтрон — нестабильная части­ца: свободный нейтрон за время 15 мин распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

Масса нейтрона mn=1838,6 электронных масс, масса протона mp= 1836,1 электронных масс, mn > mp приблизительно на 2,5 массы электрона. После открытия нейтрона Д. Д. Иваненко и В. Гейзенберг выдвинули гипотезу о протонно-нейтронном строении ядра.

В ядре протон и нейтрон неразличимы, поэтому их называют нуклонами (ядерными частицами). Число протонов Z, число нейтронов N, массовое число—это суммарное число нуклонов в ядре А..

Zзаряд ядра,

номер элемента в таблице Менделеева

N — число нейтронов

Уравнение смещения для альфа распада

Обозначение химических элементов (ядер) в атомной и ядерной физике.

Уравнение смещения для альфа распада, где X — символ химического элемента.

Уравнение смещения для альфа распада— протон; Уравнение смещения для альфа распада— нейтрон; Уравнение смещения для альфа распада— электрон; Уравнение смещения для альфа распада-частица;

Уравнение смещения для альфа распада

Типы радиоактивного распада

(правила смещения)

Альфа-распад

Превращение атомных ядер, сопровождаемое испусканием aчастиц, называетсяальфа-распадом. Теория создана Г.А. Гамовым в 1930-32 г. на основе квантово-механического туннельного эффекта.

Наиболее устойчивым из всех образований внутри ядра явля­ется образование двух протонов и двух нейтронов. Если при распределении энергии между частицами ядра это образование будет обладать энергией большей, чем энергия связи, то оно по­кинет ядро в виде a-частицы.

Если Уравнение смещения для альфа распада— материнское ядро, то превращение этого ядра при a.-распаде происходит по следую­щей схеме (правило смещения): Уравнение смещения для альфа распада где Уравнение смещения для альфа распада—символ дочернего ядра; Уравнение смещения для альфа распада—ядро атома гелия Уравнение смещения для альфа распада; hv — квант энергии, испускаемой ядром.

При альфа-распаде происходит смещение химического элемента на две клетки влево в таблице Менделеева.

Уравнение смещения для альфа распада

Уравнение смещения для альфа распада

Бета-распад Теория создана в 1930г. Энрико Ферми.

Радиоактивные ядра могут выбрасывать поток электронов, которые рождаются согласно гипотезе Ферми в результате пре­вращения нейтронов в протоны. В соответствии с правилом смещения массовое число ядра не изменя­ется: Уравнение смещения для альфа распада.

При β- распаде химический элемент пере­мещается на одну клетку вправо в периодической системе Менделеева и, кроме электро­нов, испускается антинейтрино,

Уравнение смещения для альфа распада

Уравнение смещения для альфа распада

Гамма-излучение возникает при ядерных превращениях и представляет собой электромагнитное излучение. Имеет высокую энергию.

Э. Резерфорд установил, что воздух сильнее всего ионизуют α-лучи, в меньшей степени— β-лучи и совсем плохо — γ-лучи. Поэтому проникающая способность оказалась самая малая у α-лучей (лист бумаги; несколько сантиметров слоя воздуха), а β-лучи проходят сквозь алюминиевую пластину толщиной в несколько миллиметров. Очень велика проникающая способность у γ-лучей (например, для алюминия — пластины толщиной десятки сантиметров).

🔥 Видео

Закон радиоактивного распада. 11 класс.Скачать

Закон радиоактивного распада. 11 класс.

Альфа-распад и бета-распад, урок физики для 9 класса за 27.04.20 г.Скачать

Альфа-распад и бета-распад, урок физики для 9 класса за 27.04.20 г.

Альфа, бета, гамма распад, период полураспада. ЕГЭ по физике | Николай Ньютон. ТехноскулСкачать

Альфа, бета, гамма распад, период полураспада. ЕГЭ по физике | Николай Ньютон. Техноскул

Закон радиоактивного распада. Период полураспадаСкачать

Закон радиоактивного распада. Период полураспада

Повторяем физику.Радиоактивность. Правило смещенияСкачать

Повторяем физику.Радиоактивность.  Правило смещения

Ядерные реакции. 10 класс.Скачать

Ядерные реакции. 10 класс.

Тема 28. Радиоактивность. Закон радиоакт. распада. Альфа-, бета- радиоактивность, гамма-излучениеСкачать

Тема 28. Радиоактивность. Закон радиоакт. распада. Альфа-, бета- радиоактивность, гамма-излучение

-радиоактивность альфа и бета-распады 11 классСкачать

-радиоактивность  альфа и бета-распады 11 класс

Альфа- и Бета- распадыСкачать

Альфа- и Бета- распады

Альфа-распад. Бета-распад (анимация)Скачать

Альфа-распад. Бета-распад (анимация)
Поделиться или сохранить к себе: