Синтез аминокислоты глицина постоянно происходит в организме человека, обеспечивая расходным материалом для производства белков, гормонов, биологически-активных молекул. Прочитайте статью до конца, и вы узнаете механизмы реакций, протекающих в организме для синтеза глицина. Из чего образуется глицин, где он образуется и какие дополнительные компоненты необходимы для синтеза глицина. С вами Галина Батуро и аминокислота глицин.
- Синтез глицина
- Синтез глицина из серина
- Синтез глицина из треонина
- Синтез глицина из углекислого газа и аммиака
- Синтез глицина из глиоксиловой кислоты
- Глиоксиловая кислота и орнитин
- Прямой синтез глицина из глиоксиловой кислоты
- Синтез глицина из саркозина
- Заключение
- Acetyl
- Глицин: часть 1. Мал да удал: глицин в живой природе
- Глицин: часть 1. Мал да удал: глицин в живой природе
- Введение в курс дела
- Глицин в белках и пептидах
- Откуда берется глицин в организме?
- Глицин — предшественник гема
- Глицин как участник других жизненно важных реакций
- 🔥 Видео
Видео:Аэробный и анаэробный гликолиз. Реакции катаболизма глюкозы. Расчет выхода АТФ в гликолизеСкачать
Синтез глицина
Аминокислота глицин является заменимой протеиногенной аминокислотой. Это значит, что глицин входит в состав белков. Он присутствует в больших количествах в желатине, в виде амида он является составной частью гормонов вазопрессина и окситоцина. Вазопрессин, как явствует из его названия, это гормон, сужающий сосуды и поднимающий артериальное давление. Окситоцин – это гормон, способствующий сокращению гладкой мускулатуры, в большом количестве он выделяется во время родов, заставляя сокращаться матку и выталкивать плод из чрева.
Глицин входит в состав глутатиона, гиппуровой и гликохолевой кислот. В организме человека также вырабатывается N-метил-производное глицина – саркозин. Это производное холина и аминокислоты метионина.
Глицин является источником таких важных метаболитов, как креатин, пуриновые основания и порфирины, из которых образуется белок крови гемоглобин.
Будучи заменимой аминокислотой, глицин может легко синтезироваться в организме. Он образуется в процессе следующих реакций: расщепление аминокислоты серина, синтез из воды и аммиака, аминирование глиоксиловой кислоты, деметилирование саркозина.
Видео:Синтез гидрохлорида этилового эфира глицинаСкачать
Синтез глицина из серина
90% глицина синтезируется в организме из аминокислоты серин, тоже заменимой и протеиногенной. Углеродный скелет серин получает от 3-фосфоглицерата, промежуточного продукта распада глюкозы, а аминную голову предоставляет глутаминовая кислота. Казалось бы, при таких делах организм не должен бы испытывать недостаток глицина: глюкозу мы всегда получаем в избытке, и глутаминовая кислота, которая глутамат, обильно представлена в рационе. Однако засада подстерегает, где не ждешь. И называется она витамин B9, иначе говоря, фолиевая кислота, которую по идее мы должны получать со свежими листьями и травками. В нашей полосе, где девять месяцев зима, это особенно актуально.
В синтезе глицина задействована активная форма витамина B9 (фолиевой кислоты) – Н4-Фолат, он же ТетраГидроФолиевая Кислота (ТГФК).
Образование ТГФК из фолиевой кислоты происходит в печени, это сложный каскад реакций, в которых задействованы особые ферменты, коферментом которых выступает НАДФ. Образовавшаяся ТГФК вступает в реакцию с серином при участии фермента СеринОксиМетилТрансфераза.
ТГФК принимает на себя метильную группу CH3, находящуюся в β-положении, и превращается N 5 N 10 МетиленН4Фолат, а спиртовая группа отщепляется в виде воды. Что значит это зубодробительное название? Фолат – это сокращенно фолиевая кислота, ибо соединение имеет гидроксильный хвост COOH. Метилен – означает, что соединение приняло на себя метильную группу CH2, причем приняли ее молекулы азота N в положении 5 и 10.
Реакция легко обратима, т.е. глицин может стать источником серина. В этом случае N 5 N 10 МетиленН4Фолат отдает метильную группу глицину, а вода станет источником спиртовой группы для серина. N 5 N 10 МетиленН4Фолат, образующийся вместе с глицином, быстренько превращается в N 5 МетилН4Фолат, который задействован в обезвреживании страшного гомоцистеина, превращая его в нужную аминокислоту метионин. В реакции принимает участие активная форма витамина B12 метилкобаламин.
Видео:Синтез глицина (гликокол)Скачать
Синтез глицина из треонина
Долгое время считалось, что распад треонина с образованием глицина идет в клетках печени (гепатоцитах) под воздействием фермента ТреонинАльдолазы. В учебниках рисовали красивое уравнение реакции, приведенное ниже. Не обманывайтесь, насчет обратимости реакции. Уже тогда подчеркивалось, что реакция в живых организмах преимущественно идет в сторону распада треонина с образованием глицина и ацетальдегида. Обратный синтез треонина в живых организмах не наблюдался.
В настоящее время стало известно, что фермент ТреонинАльдолаза расщепляет с образованием глицина не L-треонин, содержащийся в белках, а стереоизомер алло-треонин, который в синтезе белков не участвует (1).
Образование глицина при распаде треонина долгое время считался возможным в митохондриях под воздействием фермента ТреонинДегидрогеназы, активность которого зависит от НАД. В результате образуется аминоацетон, который окисляется до α-АминоАцетоУксусной Кислоты, а та, в свою очередь является предшественницей глицина. Следует отметить, что человек в процессе эволюции утратил способность к синтезу ТреонинДегидрогеназы, следовательно образование глицина из треонина в человеческом организме не возможно (2).
В печени человека в процессе обезвреживания глиоксиловой кислоты (о чем дальше), треонин может переаминироваться под воздействием фермента КинуренинАминоТрансферазы, который оказался идентичным СеринПируватАминоТрансферазе и АланинГлиоксилАминоТрансферазе. В пероксисомах печени в присутствии ПиридоксальФосфата (активная форма витамина В 6) треонин соединяется с глиоксиловой кислотой, в результате чего образуется глицин и α-Кето-β-АминоМасляная кислота.
Видео:Гликолиз. Транспорт глюкозы в клетку.Скачать
Синтез глицина из углекислого газа и аммиака
В печени позвоночных (и человека) при участии фермента ГлицинСинтазы глицин может образовываться из углекислого газа, аммиака, а также активной формы витамина В9 — N 5 N 10 МетиленН4Фолат (см. реакцию 1) и НАДН+Н. Реакция обратима, т.е. глицин может деградировать до углекислого газа и аммиака с образованием метилированной формы Фолата и НАДН+Н. Реакция идет в присутствии активной формы витамина B6 пиридоксальфосфата. Таким образом, для синтеза глицина нужно два витамина: фолиевая кислота (B9) и пиридоксин (B6). Фолиевая кислота содержится в свежей зелени, а также в печени, но вот беда, при тепловой обработке она разрушается. Пиридоксин содержится в семенах подсолнечника, отрубном хлебе, фасоли, красной морской рыбе и других продуктах.
Видео:Качественные реакции на глицерин, глюкозу и сахарозуСкачать
Синтез глицина из глиоксиловой кислоты
Глиоксиловая кислота — это жуткий яд, угнетающий тканевое дыхание. В больших количествах она содержится в незрелых фруктах, именно поэтому их не следует употреблять в пищу, особенно при проблемах с печенью и поджелудочной. В 30-е годы, когда в Среднем Поволжье разразился голод, мой двоюродный дед, будучи подростком, умер, поев незрелых яблок. Незрелые яблоки оказались соблазнительной пищей, с которой истощенный организм не справился. В другой раз чуть не отправился в кроличий рай мой домашний питомец, который дорвался до незрелых яблок, а я не сразу сообразила, что это не самая подходящая для него пища. Откачав крола, и вспомнив печальную историю двоюродного деда, я крепко-накрепко уяснила, что незрелые яблоки есть ни в коем случае нельзя. Теперь я знаю, почему – из-за высокого содержания глиоксиловой кислоты.
Глиоксиловая кислота также образуется в процессе биотрансформации этиленгликоля – яда, который добавляют в антифризы – жидкости-незамерзайки. При случайном (а иногда и не случайном) попадании внутрь, печень пытается обезвредить этиленгликоль, но в результате получаются соединения еще более ядовитые, и одним из них является глиоксиловая кислота.
В небольших количествах глиоксиловая кислота образуется, как побочный продукт, на пути образования холина из серина. Холин нам нужен, ибо из него получается нейромедиатор ацетилхолин.
Фермент декарбоксилаза откусывает у серина карбоксильный хвост, в результате чего получается аминоспирт 2-аминоэтанол и выделяется углекислый газ.
2-аминоэтанол может пойти на синтез холина и далее на синтез нейромедиатора ацетилхолина, а может превратиться в гликолевый альдегид, лишившись аминной головы в ходе окислительного дезаминирования.
Гликолевый альдегид – ядовитое вещество, которое надо немедленно обезвредить. Образуется он не только из 2-аминоэтанола на пути превращения серина, но также при распаде пуриновых оснований (каркаса молекул ДНК и РНК – генетических матриц клеток) и при альтернативном пути гликолиза – распаде сахаров с выходом энергии. Таким образом, имеется 3 источника естественного образования гликолевого альдегида:
- превращение аминокислоты серин с образованием 2-аминоэтанола, который дает гликолевый альдегид
- распад пуринов: ксантин преобразуется в соль мочевой кислоты, которая декарбоксилируется, т.е. теряет карбоновый хвост, превращаясь в аллантоин и аллантоиновую кислоты, а те гидролизируются до мочевины и гликолевого альдегида
- альтернативный гликолиз: глюкоза превращается во фруктозу-1,6-бисфосфат, а ту фермент кетолаза превращает в гликолевый альдегид.
Гликолевый альдегид образуется также при переработке этиленгликоля в печени, при отравлении этим соединением, причем парадоксально, продукты метаболизма опаснее самого яда.
Гликолевый альдегид окисляется ферментом АльдегидОксидазой до гликолевой кислоты, а та, в свою очередь окисляется ферментом ЛактатДегидрогеназой до глиоксиловой кислоты.
Все эти вещества являются ядами, угнетающими тканевое дыхание и синтез белка, они блокируют митохондриальный транспорт электронов, разобщают окисление и фосфорилирование, т.е. химическая энергия, выделяющаяся при сгорании органических молекул, рассеивается в виде тепла, а не используется на работу биохимического конвейера.
Организм очень хитро придумал, преобразовывать яды в полезное вещество глицин. Этим занимаются печеночные клетки в особых органеллах – микротельцах (пероксисомах).
Основная реакция обезвреживания глиоксиловой кислоты – это соединение с аланином.
Донором аминной группы в этой реакции выступает аминокислота аланин, которая превращается в пируват. Реакция идет при участии фермента АланинГлиоксилатАминоТрансферазы в сопровождении активной формы витамина В6 – ПиридоксальФосфаста.
Видео:[биохимия] — ГЛИКОЛИЗСкачать
Глиоксиловая кислота и орнитин
Другой реакцией обезвреживания глиоксиловой кислоты является соединение с орнитином, и на выходе получается глицин и γ-полуальдегид глутамиловой кислоты. Реакция активно идет в печени.
Где взять орнитин? Орнинин образуется из аргинина в процессе обезвреживания мочевины.
Видео:Глицин и аденозин — Вячеслав ДубынинСкачать
Прямой синтез глицина из глиоксиловой кислоты
Глицин может образовываться прямым синтезом из глиоксиловой кислоты. В этом случае аминную голову он берет у всевездесущего глутамата, который переходит в α-кетоглутарат. Реакция идет при участии фермента ГлицинАминоТрансферазы. Обратите внимание, что реакция обратима, т.е. глицин вполне может выступать источником глиоксиловой кислоты, и это не есть айс.
Глицин, таким образом, синтезируется, как конечный метаболит на пути обезвреживания гликолевого альдегида, гликолевой кислоты и глиоксиловой кислоты. Коль речь зашла об отравлении, надо сказать, что глиоксиловая кислота может превращаться в щавелевую кислоту, а та, поймав кальций, выпадает в осадок, образуя оксалаты – кальциевые соли щавелевой кислоты. Оксалаты представляют собой игольчатые кристаллы, они травмируют мочевыводящие протоки, образуют почечные камни. Образование большого количества оксалатов приводит к нарушению функции почек при отравлении этиленгликолем.
К чему это я? А к тому, что в некоторых случаях глицин выступает источником глиоксиловой кислоты, со всеми последствиями в виде образования в почках осксалатных камней.
Видео:Аминокислоты. Глицин. Реальные эффекты. Седация и артериальное давлениеСкачать
Синтез глицина из саркозина
Саркозин – важный участник биохимического конвейера, в котором он задействован, как донор одноуглеродной группы в реакциях транметилирования, т.е. обмена метильными остатками CH3. Саркозин образуется в процессе распада холина. Превращения саркозина тесно связаны с глицином. Саркозин образуется из глицина, как непосредственно, так и через длинную биохимическую цепочку, в начале которой глицин превращается в серин, дальше через ряд соединений образуется холин, а из того при распаде получается саркозин.
У млекопитающихся (и человека) обнаружена размещенная в митохондриях ферментная система, которая разлагает саркозин с образованием глицина. 90% саркозина разлагается в митохондриях печени, а 10% — в почках. Реакция идет под действием фермента СаркозинДегидрогеназы, причем фермент работает при содействии апофермента, связанного с мембраной митохондрий. Его активность проявляется только в присутствии специфического флавопротеида ФАД (активной формы витамина В2 – рибофлавина), необходимого для переноса электронов. Эта реакция может идти как в присутствии, так и без ТетраГидроФолата (ТГФК – активной формы витамина В9 – фолиевой кислоты). В анаэробных условиях, т.е. без кислорода, ТГФК в реакции не участвует, в результате образуется свободный формальдегид, ядовитое вещество, которое срочно требуется обезвредить. В присутствии кислорода в реакцию вступает ТГФК, который забирает углеродный остаток СН3 у формальдегида, превращаясь в уже известный N 5 N 10 МетиленН4Фолат с выделением воды.
Точный механизм реакции не известен. Общая схема выглядит следующим образом:
Реакция в бескислородной среде протекает в два этапа. При участии кислорода и ТГФК – в три.
Первый этап: перенос водорода с N-метильной группы саркозина на ФАД, что позволяет воде атаковать образовавшийся положительно-заряженный карбокатион, с образованием промежуточного соединения. Происходит отсечение метильной головы, иначе говоря, деметилирование N-метильной группы на саркозине. Восстановленный на первой стадии ФАД Н — окисляется кислородом с образованием перекиси водорода.
Промежуточное соединение без ТГФК окисляется в глицин с выходом формальдегида.
На третьем этапе происходит обезвреживание формальдегида, для чего нужна ТГФК (активная форма фолиевой кислоты – витамина В9). ТГФК принимает на себя одноуглеродный остаток от формальдегида и превращается в N 5 ,N 10 -МетиленТетраГидроФолат.
Превращение происходит в четыре этапа с выделением воды.
Видео:Глицин плюс N-ацетилцистеин: поворачивают вспять 10 признаков старения. Ошеломляющие результаты.Скачать
Заключение
Глицин – активный участник биохимического конвейера, задействованный в переносе одноуглеродного остатка CH3, т.е. в реакциях метилирования. Обмен глицина тесно связан с обменом другой аминокислоты – серина и активной формы витамина B9 – фолиевой кислоты ТГФК. Биологический смысл данных процессов в передаче одноуглеродного остатка по биохимическому конвейеру, при этом глицин выступает источником одноуглеродного остатка, а ТГФК – передающим звеном, при этом обезвреживается образующийся в процессе биосинтеза опасный гомоцистеин с образованием безопасной аминокислоты метионин.
Глицин является конечным безопасным продуктом при обезвреживании клеточных ядов, имеющих как биосинтетическое происхождение, т.е. образующихся внутри организма при работе биохимического конвейера, так и пищевое происхождение, т.е. поступающих в организм извне, с пищей. Это гликолевый альдегид, гликолевая кислота и глиоксиловая кислота. В результате преобразований, происходящих в печени, клеточные яды превращаются в безопасный глицин.
Глицин также является конечным безопасным продуктом при утилизации холина и саркозина, в процессе которой образуются клеточный яд – формальдегид.
Распад биологически-активных молекул приводит к образованию опасных для организма веществ, требующих обезвреживания. Организм затрачивает усилия в виде энергии и работы ферментов и витаминов для того, чтобы запустить вторичное использование отработанных молекул, превращая яды в глицин. Глицин в свою очередь связывает обмен аминокислот, пуриновых оснований, порфиринов и, через аминокислоту серин, подпитывает углеводный обмен, давая организму энергию.
- Стр. 6. Малиновский А.В. «Переаминирование треонина»
- Стр. 15. Малиновский А.В. «Переаминирование треонина»
_» style=’position: relative; display: inline-block; /* height: 24px; */ /* padding: 0 12px 0 27px; */ /* border-radius: 12px; */ cursor: pointer; /* background: #21A5D8; */ text-decoration: none; padding: 2px 8px 2px 29px; /* font-size: 14px; */ /* font-family: Arial,sans-serif; */ /* color: #FFF; */ line-height: 25px; margin: 6px; color: #000; background: #fff; border: 1px solid #ccc; border-radius: 3px; vertical-align: middle; font-family: «Helvetica Neue»,Arial,sans-serif; font-size: 13px; line-height: 20px; cursor: pointer; line-height: 19px;’>
Видео:ГлицинСкачать
Acetyl
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
H + | Li + | K + | Na + | NH4 + | Ba 2+ | Ca 2+ | Mg 2+ | Sr 2+ | Al 3+ | Cr 3+ | Fe 2+ | Fe 3+ | Ni 2+ | Co 2+ | Mn 2+ | Zn 2+ | Ag + | Hg 2+ | Pb 2+ | Sn 2+ | Cu 2+ | |
OH — | Р | Р | Р | Р | Р | М | Н | М | Н | Н | Н | Н | Н | Н | Н | Н | — | — | Н | Н | Н | |
F — | Р | М | Р | Р | Р | М | Н | Н | М | М | Н | Н | Н | Р | Р | Р | Р | Р | — | Н | Р | Р |
Cl — | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Н | Р | М | Р | Р |
Br — | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Н | М | М | Р | Р |
I — | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | ? | Р | ? | Р | Р | Р | Р | Н | Н | Н | М | ? |
S 2- | М | Р | Р | Р | Р | — | — | — | Н | — | — | Н | — | Н | Н | Н | Н | Н | Н | Н | Н | Н |
HS — | Р | Р | Р | Р | Р | Р | Р | Р | Р | ? | ? | ? | ? | ? | Н | ? | ? | ? | ? | ? | ? | ? |
SO3 2- | Р | Р | Р | Р | Р | Н | Н | М | Н | ? | — | Н | ? | Н | Н | ? | М | М | — | Н | ? | ? |
HSO3 — | Р | ? | Р | Р | Р | Р | Р | Р | Р | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
SO4 2- | Р | Р | Р | Р | Р | Н | М | Р | Н | Р | Р | Р | Р | Р | Р | Р | Р | М | — | Н | Р | Р |
HSO4 — | Р | Р | Р | Р | Р | Р | Р | Р | — | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | Н | ? | ? |
NO3 — | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | — | Р |
NO2 — | Р | Р | Р | Р | Р | Р | Р | Р | Р | ? | ? | ? | ? | Р | М | ? | ? | М | ? | ? | ? | ? |
PO4 3- | Р | Н | Р | Р | — | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н |
CO3 2- | Р | Р | Р | Р | Р | Н | Н | Н | Н | ? | ? | Н | ? | Н | Н | Н | Н | Н | ? | Н | ? | Н |
CH3COO — | Р | Р | Р | Р | Р | Р | Р | Р | Р | — | Р | Р | — | Р | Р | Р | Р | Р | Р | Р | — | Р |
SiO3 2- | Н | Н | Р | Р | ? | Н | Н | Н | Н | ? | ? | Н | ? | ? | ? | Н | Н | ? | ? | Н | ? | ? |
Растворимые (>1%) | Нерастворимые ( Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время. Вы можете также связаться с преподавателем напрямую: 8(906)72 3-11-5 2 Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте. Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши. Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить». Этим вы поможете сделать сайт лучше. К сожалению, регистрация на сайте пока недоступна. На сайте есть сноски двух типов: Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего. Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения. Здесь вы можете выбрать параметры отображения органических соединений. Видео:Метаболизм пуринов и пиримидиновСкачать Глицин: часть 1. Мал да удал: глицин в живой природе14 августа 2018 Видео:ГЛИЦИН, в чем польза и зачем принимать?Скачать Глицин: часть 1. Мал да удал: глицин в живой природе
Молекула глицина на фоне шелка, в состав которого глицин входит в больших количествах АвторРедакторыЭта статья о глицине — самой маленькой аминокислоте в природе, чья роль, тем не менее, огромна. Вы узнаете, в состав каких белков и пептидов входит глицин, как синтезируется в организме и предшественником каких веществ является. Видео:Обмен серина и глицинаСкачать Введение в курс делаАминокислоты — это одни из самых важных веществ в живой природе. Будучи довольно небольшими молекулами, они играют огромную роль в живых организмах. Подобно жемчужинам в ожерелье, они слагают большие молекулы — белки, из которых построены все живые существа — от мала до велика. Функция аминокислот не исчерпывается только тем, что они становятся строительным материалом для белков. Аминокислоты могут специализироваться на других задачах. Общая формула аминокислот приведена на рисунке 1. Рисунок 1. Структура аминокислот. а — Общая формула α-аминоксилот. Компонентами этих соединений являются углеродный скелет, карбоксильная и аминогруппы, а также боковая группа, определяющая индивидуальные свойства разных аминокислот. Важно, что почти во всех природных аминокислотах аминогруппа расположена слева от углеродного скелета (L-изомеры). α-L-аминокислоты — основа природных белков. б — Формула глицина. Боковая группа в этой молекуле представлена протоном. Таким образом, глицин — самая простая аминокислота из всех возможных. Эта статья посвящена глицину — самой маленькой из всех теоретически возможных аминокислот. Но, несмотря на свою крохотную боковую группу, представленную одним протоном, глицин — неотъемлемый компонент белков и участник нескольких важных процессов. Поговорка «мал, да удал» — это про глицин! В первой части статьи мы рассмотрим некоторые белки и пептиды, для которых глицин имеет большое значение, а также разберем, откуда глицин в организме вообще берется и в чем, кроме белков, используется. Мы не будем претендовать на абсолютную полноту картины функций глицина, но остановимся на наиболее важных моментах. Видео:Биохимия | Синтез жиров и фосфолипидовСкачать Глицин в белках и пептидахГлицин — вещество не редкое. Почти ни один белок не обходится без него. В среднем глицин составляет чуть больше 7% аминокислотных остатков («жемчужин») в белках [1]. При этом давайте учтем, что разнообразие белковых аминокислот довольно велико, поэтому названная цифра — почти рекорд! А уж где глицина действительно много — так это в коллагене. Коллаген — сложно устроенный белок, являющийся одним из основных компонентов соединительной ткани. Он присутствует в сухожилиях, коже, кровеносных сосудах, роговице, костях и хрящах, а также в чешуе рыб и шерсти млекопитающих, выполняя структурную роль и составляя до 30% массы позвоночных животных [2]. Таким образом, это один из самых распространенных животных белков. Существует несколько типов коллагена. Коллаген обеспечивает прочность соединительных тканей, а потому и сам обладает свойством устойчивости к растяжению, и это качество определяется его структурой (рис. 2) [2]. Рисунок 2. Структура коллагена. Три обвивающие друг друга нити образуют суперспираль, как пряди волос — косу. Суперспирали, располагаясь друг относительно друга строго определенным образом, формируют фибриллу. Такое устройство белка способствует его механической устойчивости: кости ломаться не должны. [2], рисунок с изменениями Но причем же тут глицин? Дело в том, что полипептидные нити молекул коллагена, как орнамент, состоят из повторяющегося «узора» — паттерна из трех аминокислотных остатков: Gly—Pro—X и Gly—X—Hyp [3]. Здесь Gly — глицин, Pro — пролин, Hyp — 4-гидроксипролин, X — другая аминокислота. Из этой формулы видно, что глицин составляет треть аминокислот коллагена! Природа не стала бы играть такими цифрами просто забавы ради. Присутствие глицина — одна из предпосылок к формированию прочных фибрилл и волокон коллагена, необходимых для многих тканей. Три нити, формирующие коллагеновую суперспираль, переплетаются настолько плотно, что между ними нет свободного пространства. И только лишь один глицин со своей крохотной боковой группой способен интегрироваться в эту систему, как кусочек мозаики. Замена глицина на какую-то другую аминокислоту, имеющую более объемную боковую группу (например, серин), может привести к серьезным патологиям, например, к синдрому Элерса—Данлоса (это гетерогенная группа наследственных нарушений соединительной ткани) [4], [5]. Глицином богат еще один структурный белок — фиброин — основной компонент паутины и шелка. Почти половина аминокислотных остатков фиброина — глицин! Как и в случае с коллагеном, там он входит в состав повторяющейся последовательности. Белкам близка еще одна группа биологических веществ — пептиды. Они тоже сложены из аминокислот, только меньше белков по размерам (но граница между белками и пептидами размыта). Рисунок 3. Pyrrhocoris apterus. Это известный многим клоп-солдатик — яркий (во всех смыслах этого слова) представитель отряда полужесткокрылые, или клопы (Hemiptera). При внедрении бактерий в его гемолимфе обнаруживаются несколько антимикробных пептидов, включая богатый глицином гемиптерицин [8]. Не только он, но и многие другие животные борются с патогенами с помощью глицин-богатых пептидов. Посмотрим на так называемые антимикробные пептиды. Это, как правило, положительно заряженные (катионные) молекулы, которые участвуют в иммунном ответе, воздействуя на мембраны бактерий или других патогенов [6]. С помощью этих относительно небольших молекул человек и другие животные, включая разнообразных букашек, борются с болезнетворными организмами, которым удалось пробраться во внутреннюю среду. До сих пор не разработано единой классификации антимикробных пептидов, но известно, что те или иные из них характеризуются определенными структурными особенностями. В частности, в них может в большом количестве присутствовать какая-то аминокислота, в том числе и глицин. К глицин-богатым антимикробным пептидам относят акалолептины из гемолимфы жука-дровосека Acalolepta luxuriosa, акантоскуррин из гемоцитов паука Acanthoscurria gomesiana, аттацины из насекомых отрядов чешуекрылые и двукрылые, гемиптерицин из известного многим клопа-солдатика Pyrrhocoris apterus (рис. 3) и другие (гименоптецин, гловерины, колеоптерицины, риноцерозин, холотрицин-2 и −3). Глицин-богатые домены имеют пептиды гиастатин и крустины [7], [8]. Конечно, глицин присутствует и во многих других белках и пептидах. Это делает его одной из самых распространенных природных аминокислот. Видео:Почему анализы на глюкозу и инсулин являются бесполезными?Скачать Откуда берется глицин в организме?Конечно, эта чудесная аминокислота попадает к нам с пищей в составе белков. Тем не менее основной источник глицина — процессы синтеза, проходящие в нашем теле, что позволяет отнести глицин к заменимым аминокислотам. Главный его предшественник — серин. Это тоже аминокислота, только в ее молекуле на один атом углерода больше. Что же с ним сделать? Здесь природа идет по проторенной дорожке: она передает его на вещество-кофермент тетрагидрофолат, который «любит» одноуглеродные фрагменты. В результате реакции на свет рождается глицин (рис. 4). Рисунок 4. Синтез глицина из 3-фосфоглицерата через серин. Цифрами обозначены ферменты: 1 — фосфоглицератдегидрогеназа; 2 — фосфосеринаминотрансфераза; 3 — фосфосеринфосфатаза; 4 — серин-гидроксиметилтрансфераза. У позвоночных животных, включая и нас любимых, есть еще один любопытный способ произвести глицин. Исходными веществами в реакции, катализируемой ферментом глицинсинтазой, являются довольно простые вещества — углекислый газ и аммиак (в виде иона). Эта реакция тоже не обходится без уже известного нам «любителя» одноуглеродных фрагментов: CO2 + NH4 + + N 5 ,N 10 -метилентетрагидрофолат + NADH + H + = глицин + тетрагидрофолат + NAD + Voilà! (Извините за мой французский.) Образовавшийся глицин поступает на службу организму. Гиперактивация серинглицинового биосинтетического пути способна привести к развитию рака, ведь этот путь важен для получения большого количества «строительных» веществ (нуклеиновых кислот, белков, липидов), которые так необходимы активно делящимся раковым клеткам. Антифолатная химиотерапия широко используется в лечении рака [9]. Видео:Свойства глюкозы. 11 класс.Скачать Глицин — предшественник гемаПочему кровь красная? Потому что в ней есть гемоглобин — красный белок, имеющий в своем составе гем. Это железосодержащая порфириновая система, на которую и садится кислород, от легких с кровью поступающий к разным тканям. Глицин является одним из предшественников гема у животных. Реакция с участием глицина представлена на рисунке 5. Рисунок 5. Роль глицина в синтезе гема. а — Эритроциты («красные кровяные тельца») — клетки, содержащие красный белок гемоглобин. б — Цвет гемоглобина, а также его транспортная функция обеспечиваются присутствием гема. в — Синтез дельта-аминолевулиновой кислоты из сукцинил-КоА и глицина — первая реакция в синтезе порфириновых систем у животных. Синтез порфиринов — отдельная большая «опера», причем глицин участвует только в первой «арии», и в этой статье мы не будем изучать полную «партитуру». Тем не менее роль глицина в этом фундаментальном процессе огромна. Видео:Глицин. Чудо средство на все времена? Вся правда!Скачать Глицин как участник других жизненно важных реакцийЧто такое ДНК? Правильно! Химический субстрат наследственности. Это знают все. Но не все знают, что каждая из цепей ДНК состоит из «кирпичиков», называемых нуклеотидами. Каждый нуклеотид включает в себя, помимо прочего, азотистое основание. Азотистые основания ДНК бывают двух типов — пуриновые (аденин и гуанин) и пиримидиновые (тимин и цитозин). Глицин принимает участие в синтезе нуклеотидов с пуриновыми основаниями (рис. 6). Рисунок 6. ДНК и схема пуринового азотистого основания. а — Модель знаменитой «двойной спирали», на которой хорошо видны «кирпичики» (нуклеотиды), формирующие каждую из двух цепей. б — Схема пуринового азотистого основания, которое соединяется с пентозой в составе нуклеотида; часть этой конструкции формируется за счет глицина. Рисунок 7. Одним из предшественников креатина является глицин При синтезе пуриновых нуклеотидов de novo азотистое основание «садится» на уже готовую связь с пентозой и наращивается постепенно. На одном из начальных этапов в дело вступает глицин, благодаря которому в состав структуры входят два углеродных атома и один азотный. Разнообразие комбинаций азотистых оснований в молекуле ДНК является основой биологического разнообразия на планете. Кроме этого, глицин участвует в синтезе креатина (рис. 7) — вещества-аккумулятора энергии в мышцах и нервных клетках, то есть в тех местах организма, где требуется поддерживать высокий уровень энергии. 🔥 ВидеоГлицин. Чудо средство на все времена? Вся правда!Скачать Биохимия. Лекция 42. Обмен аминокислот. 4 часть. Обмен отдельных аминокислотСкачать Биохакинг / Как укрепить Иммунитет двумя добавкамиСкачать |