Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

Задачи по динамике.

I и II закон Ньютона.

Ввод и направление осей.

Проецирование сил на оси.

Решение систем уравнений.

Самые типовые задачи по динамике

Начнем с I и II законов Ньютона.

Откроем учебник физики и прочтем. I закон Ньютона: существуют такие инерциальные системы отсчета в которых. Закроем такой учебник, я тоже не понимаю. Ладно шучу, понимаю, но объясню проще.

I закон Ньютона: если тело стоит на месте либо движется равномерно (без ускорения), сумма действующих на него сил равна нулю.

Уравнение силы трения на наклонной плоскости

Вывод: Если тело движется с постоянной скоростью или стоит на месте векторная сумма сил будет ноль.

II закон Ньютона: если тело движется равноускоренно или равнозамедленно (с ускорением), сумма сил, действующих на него, равна произведению массы на ускорение.

Уравнение силы трения на наклонной плоскости

Вывод: Если тело двигается с изменяющейся скоростью, то векторная сумма сил, которые как-то влияют на это тело ( сила тяги, сила трения, сила сопротивления воздуха), равна массе этого тело умножить на ускорение.

При этом одно и то же тело чаще всего движется по-разному (равномерно или с ускорением) в разных осях. Рассмотрим именно такой пример.

Задача 1. Определите коэффициент трения шин автомобиля массой 600 кг, если сила тяги двигателя 4500 Н вызывает ускорение 5 м/с².

Обязательно в таких задачах делать рисунок, и показывать силы, которые дествуют на машину:

Уравнение силы трения на наклонной плоскости

На Ось Х: движение с ускорением

На Ось Y: нет движения (здесь координата, как была ноль так и останется, машина не поднимает в горы или спускается вниз)

Уравнение силы трения на наклонной плоскости

Те силы, направление которых совпадает с направлением осей, будут с плюсом, в противоположном случае — с минусом.

По оси X: сила тяги направлена вправо, так же как и ось X, ускорение так же направлено вправо.

Уравнение силы трения на наклонной плоскости

Fтр = μN, где N — сила реакции опоры. На оси Y: N = mg, тогда в данной задаче Fтр = μmg.

Уравнение силы трения на наклонной плоскости

Коэффициент трения — безразмерная величина. Следовательно, единиц измерения нет.

Задача 2. Груз массой 5кг, привязанный к невесомой нерастяжимой нити, поднимают вверх с ускорением 3м/с². Определите силу натяжения нити.

Сделаем рисунок, покажем силы, которые дествуют на груз

Уравнение силы трения на наклонной плоскости

T — сила натяжения нити

На ось X: нет сил

Уравнение силы трения на наклонной плоскости

Разберемся с направлением сил на ось Y:

Уравнение силы трения на наклонной плоскости

Выразим T (силу натяжения) и подставим числительные значения:

Уравнение силы трения на наклонной плоскости

Самое главное не запутаться с направлением сил (по оси или против), все остальное сделает калькулятор или всеми любимый столбик.

Далеко не всегда все силы, действующие на тело, направлены вдоль осей.

Простой пример: мальчик тянет санки

Уравнение силы трения на наклонной плоскости

Если мы так же построим оси X и Y, то сила натяжения (тяги) не будет лежать ни на одной из осей.

Уравнение силы трения на наклонной плоскостиЧтобы спроецировать силу тяги на оси, вспомним прямоугольный треугольник.

Уравнение силы трения на наклонной плоскости

Отношение противолежащего катета к гипотенузе — это синус.

Отношение прилежащего катета к гипотенузе — это косинус.

Сила тяги на ось Y — отрезок (вектор) BC.

Сила тяги на ось X — отрезок (вектор) AC.

Если это непонятно, посмотрите задачу №4.

Чем длинее будет верека и, соответсвенно, меньше угол α, тем проще будет тянуть санки. Идеальный вариант, когда веревка параллельна земле , ведь сила, которая действуют на ось X— это Fнcosα. При каком угле косинус максимален? Чем больше будет этот катет, тем сильнее горизонтальная сила.

Задача 3. Брусок подвешен на двух нитях. Сила натяжения первой составляет 34 Н, второй — 21Н, θ1 = 45°, θ2 = 60°. Найдите массу бруска.

Уравнение силы трения на наклонной плоскости

Введем оси и спроецируем силы:

Уравнение силы трения на наклонной плоскости

Получаем два прямоугольных треугольника. Гипотенузы AB и KL — силы натяжения. LM и BC — проекции на ось X, AC и KM — на ось Y.

Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

Задача 4. Брусок массой 5 кг (масса в этой задаче не нужна, но, чтобы в уравнениях все было известно, возьмем конкретное значение) соскальзывает с плоскости, которая наклонена под углом 45°, с коэффициентом трения μ = 0,1. Найдите ускорение движения бруска?

Уравнение силы трения на наклонной плоскости

Когда же есть наклонная плоскость, оси (X и Y) лучше всего направить по направлению движения тела. Некоторые силы в данном случае ( здесь это mg) не будут лежать ни на одной из осей. Эту силу нужно спроецировать, чтобы она имела такое же направление, как и взятые оси.
Всегда ΔABC подобен ΔKOM в таких задачах (по прямому углу и углу наклона плоскости).

Рассмотрим поподробнее ΔKOM:

Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскостиПолучим, что KO лежит на оси Y, и проекция mg на ось Y будет с косинусом. А вектор MK коллинеарен (параллелен) оси X, проекция mg на ось X будет с синусом, и вектор МК направлен против оси X (то есть будет с минусом).

Уравнение силы трения на наклонной плоскости

Не забываем, что, если направления оси и силы не совпадают, ее нужно взять с минусом!

Из оси Y выражаем N и подставляем в уравнение оси X, находим ускорение:

Уравнение силы трения на наклонной плоскостиУравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

Как видно, массу в числителе можно вынести за скобки и сократить со знаменаталем. Тогда знать ее не обязательно, получить ответ реально и без нее.
Да-да, в идеальных условиях (когда нет силы сопротивления воздуха и т.п.), что перо, что гиря скатятся (упадут) за одно и тоже время.

Задача 5. Автобус съезжает с горки под уклоном 60° с ускорением 8 м/с² и с силой тяги 8 кН. Коэффициент трения шин об асфальт равен 0,4. Найдите массу автобуса.

Сделаем рисунок с силами:

Уравнение силы трения на наклонной плоскости

Введем оси X и Y. Спроецируем mg на оси:

Уравнение силы трения на наклонной плоскости

Запишем второй закон Ньютона на X и Y:

Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

Задача 6. Поезд движется по закруглению радиуса 800 м со скоростью 72 км/ч. Определить, на сколько внешний рельс должен быть выше внутреннего. Расстояние между рельсами 1,5 м.

Самое сложное — понять, какие силы куда действуют, и как угол влияет на них.

Уравнение силы трения на наклонной плоскости

Вспомни, когда едешь по кругу на машине или в автобусе, куда тебя выталкивает? Для этого и нужен наклон, чтобы поезд не упал набок!

Угол α задает отношение разницы высоты рельсов к расстоянию между ними (если бы рельсы находились горизонтально)

Запишем какие силы действуют на оси:

Уравнение силы трения на наклонной плоскости

Ускорение в данной задачи центростремительное!

Поделим одно уравнение на другое:

Уравнение силы трения на наклонной плоскости

Тангенс — это отношение противолежащего катета к прилежащему:

Уравнение силы трения на наклонной плоскости

Как мы выяснили, решение подобных задач сводится к расстановке направлений сил, проецированию их на оси и к решению систем уравнений, почти сущий пустяк.

В качестве закрепления материала решите несколько похожих задач с подсказками и ответами.

Содержание
  1. Глава 6. Запрягаемся в упряжку: наклонные плоскости и трение
  2. Разбираемся с гравитацией
  3. Движемся по наклонной плоскости
  4. Вычисляем углы
  5. Ищем компоненту вектора силы Fg вдоль наклонной плоскости
  6. Вычисляем скорость вдоль наклонной плоскости
  7. Разбираемся с ускорением
  8. Преодолеваем трение
  9. Вычисляем силу трения и нормальную силу
  10. Разбираемся с коэффициентом трения
  11. Знакомимся со статическим и кинетическим трением
  12. Изучаем статическое трение
  13. Поддерживаем движение вопреки трению скольжения
  14. Тянем груз в гору и боремся с трением
  15. Вычисляем компоненту силы тяжести
  16. Определяем силу трения
  17. Вычисляем путь скольжения холодильника до полной остановки
  18. Как гравитация влияет на свободное падение объектов
  19. Стреляем вверх: максимальная высота
  20. Время подъема ядра
  21. Общее время полета
  22. Стреляем под углом
  23. Разбиваем движение ядра на компоненты
  24. Определяем максимальную дальность полета ядра
  25. Трение
  26. 🔍 Видео

Видео:Урок 87. Движение по наклонной плоскости (ч.1)Скачать

Урок 87. Движение по наклонной плоскости (ч.1)

Глава 6. Запрягаемся в упряжку: наклонные плоскости и трение

Уравнение силы трения на наклонной плоскости

  • Постигаем гравитацию
  • Изучаем влияние наклона плоскости
  • Учитываем силы трения
  • Измеряем дальность полета под действием силы тяжести

Сила гравитационного притяжения — вот основная тема этой главы. В главе 5 было показано, что для ее преодоления требуется применять силу. В этой главе будет представлены способы влияния гравитационного притяжения и трения на движение объектов по наклонным плоскостям. Кроме того, будет показано, как гравитация влияет на траекторию полета объекта.

Видео:ДВИЖЕНИЕ ПО НАКЛОННОЙ ПЛОСКОСТИ | механика 10 классСкачать

ДВИЖЕНИЕ ПО НАКЛОННОЙ ПЛОСКОСТИ | механика 10 класс

Разбираемся с гравитацией

На поверхности Земли сила гравитационного притяжения ​ ( mathbf ) ​ (или сила тяжести) постоянна и равна ​ ( mmathbf ) ​, где ​ ( m ) ​ — это масса объекта, a ​ ( mathbf ) ​ — ускорение свободного падения под действием силы тяжести, равное 9,8 м/с 2 .

Ускорение — это вектор, а значит, он имеет величину, направление и точку приложения (подробнее об этом см. главу 4). Уравнение ( mathbf=mmathbf ) интересно тем, что ускорение свободного падения объекта ​ ( g ) ​ не зависит от массы объекта.

Поскольку ускорение свободного падения не зависит от массы объекта, то более тяжелый объект падает нисколько не быстрее, чем более легкий объект. Сила тяжести сообщает свободно падающим телам одинаковое направленное вниз ускорение ( mathbf ) (на поверхности Земли равное ( mathbf ) ), независимо от их массы.

Сказанное выше относится к объектам вблизи поверхности Земли, а в главе 7 рассматриваются другие ситуации вдали от Земли (например, на орбите Луны), где сила тяжести и ускорение свободного падения имеют другие значения. Чем дальше вы находитесь от центра Земли, тем меньше сила тяжести и ускорение свободного падения. В примерах этой главы ускорение свободного падения направлено вниз. Но это не значит, что оно влияет только на движение предметов вертикально вниз. Здесь рассматриваются также примеры движения объектов под углом к вертикали.

Видео:Наклонная плоскость. Расстановка сил | 50 уроков физики (6/50)Скачать

Наклонная плоскость. Расстановка сил | 50 уроков физики (6/50)

Движемся по наклонной плоскости

В курсе физики часто упоминаются наклонные плоскости и рассматривается движение объектов по ним. Взгляните на рис. 6.1. На нем показана тележка, которая скатывается по наклонной плоскости. Тележка движется не строго вертикально, а вдоль плоскости, наклоненной под углом ​ ( theta ) ​ к горизонтали.

Уравнение силы трения на наклонной плоскости

Допустим, что угол ( theta ) = 30°, а длина наклонной плоскости равна 5 метрам. До какой скорости разгонится тележка в конце наклонной плоскости? Сила тяжести сообщит тележке ускорение, но учтите, что вдоль наклонной плоскости ускорение будет отличаться от ускорения свободного падения. Дело в том, что разгон вдоль наклонной плоскости будет выполнять только компонента силы тяжести вдоль этой наклонной плоскости.

Чему равна компонента силы тяжести, действующей вдоль наклонной плоскости, если на тележку действует направленная вертикально сила тяжести ( mathbf ) ? Взгляните на рис. 6.2, на котором показаны упомянутые выше угол ( theta ) и вектор силы ( mathbf ) (подробнее о векторах см. главу 4). Для определения компоненты силы тяжести, действующей вдоль наклонной плоскости, нужно определить угол между вектором силы ( mathbf ) и наклонной плоскостью. Для этого потребуются элементарные сведения из геометрии (подробности см. в главе 2), а именно то, что сумма углов треугольника равна 180°. Угол между вектором силы ( mathbf ) и основанием наклонной плоскости равен 90°, а угол между наклонной плоскостью и ее основанием равен ( theta ) . Поэтому, глядя на рис. 6.2 , можно легко определить угол между вектором силы ( mathbf ) и наклонной плоскостью: 180°-90°- ( theta ) или 90°- ( theta ) .

Уравнение силы трения на наклонной плоскости

Вычисляем углы

Преподаватели физики используют особый способ вычисления углов между векторами и наклонными плоскостями. Однако читателям книги можно раскрыть этот “секрет” определения угла ( theta ) . Для начала обратите внимание на то, что если ( theta ) стремится к 0°, то угол между вектором силы ( mathbf ) и наклонной плоскостью стремится к 90°. И наоборот, если ( theta ) стремится к 90°, то угол между вектором силы ( mathbf ) и наклонной плоскостью стремится к 0°. На основании этого простого наблюдения можно предположить, что угол между вектором силы ( mathbf ) и наклонной плоскостью равняется 90°- ( theta ) . Как видите, для определения взаимосвязи между углами бывает полезно попробовать поменять значения некоторых углов от 0° до 90°.

Ищем компоненту вектора силы Fg вдоль наклонной плоскости

Итак, зададимся вопросом: чему равна компонента вектора силы ( mathbf ) вдоль наклонной плоскости? Теперь мы знаем, что угол между вектором силы ( mathbf ) и наклонной плоскостью равняется 90°-​ ( theta ) ​. Значит, компонента вектора силы вдоль наклонной плоскости ( F_ ) равна:

Уравнение силы трения на наклонной плоскости

Если вы добросовестно учили тригонометрию, то вам наверняка должно быть известно (а если нет, то обратитесь к главе 2), что:

Уравнение силы трения на наклонной плоскости

(Часто это знать совсем не обязательно, и может сгодиться предыдущее уравнение.)

Уравнение силы трения на наклонной плоскости

Полученное выражение можно легко проверить следующим образом. Когда ​ ( theta ) ​ стремится к 0°, то значение компоненты силы вдоль наклонной плоскости ( F_ ) стремится к 0, поскольку наклонная плоскость стремится к горизонтальному положению. А когда ​ ( theta ) ​ стремится к 90°, то значение компоненты силы вдоль наклонной плоскости ( F_ ) стремится к ​ ( F_g ) ​ поскольку наклонная плоскость стремится к вертикальному положению. Итак, если вдоль наклонной плоскости на тележку с массой 800 кг действует сила ​ ( F_gsintheta ) ​, то каким будет ускорение тележки? Это легко определить по известной формуле:

Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

Задача упрощается, если вспомнить, что ​ ( F_g=mg ) ​ и тогда:

Уравнение силы трения на наклонной плоскости

Итак, теперь нам известно, что ускорение тележки вдоль наклонной плоскости равно ​ ( a=gsintheta ) ​. Это соотношение справедливо для любого объекта, ускоряющегося под действием силы тяжести, если не учитывать силы трения.

Вычисляем скорость вдоль наклонной плоскости

Логично было бы поинтересоваться: а какова скорость тележки в конце наклонной плоскости? Для этого нам потребуется следующее уравнение, которое было выведено в главе 3:

Уравнение силы трения на наклонной плоскости

Поскольку начальная скорость ​ ( v_0 ) ​ = 0, а длина наклонной плоскости ​ ( s ) ​ = 5 м, то получим:

Уравнение силы трения на наклонной плоскости

Итак, скорость тележки в конце наклонной плоскости ( v_1 ) = 7 метров в секунду. Хотя это не такая уж и большая скорость для автомобиля, но все же не рекомендуется проводить такие эксперименты в домашних условиях. Имейте в виду, что на самом деле скорость будет несколько ниже, поскольку часть энергии расходуется на вращение колес, движение других частей автомобиля, трение и т.д.

Разбираемся с ускорением

Блиц-вопрос: а какую скорость в конце наклонной плоскости приобретет кубик льда при скольжении без трения? Ответ: он будет иметь такую же скорость, что и тележка в предыдущем примере, т.е. 7 м/с. Ускорение любого объекта, движущегося без трения вдоль наклонной плоскости под углом ​ ( theta ) ​, равно ​ ( gsintheta ) ​. Как видите, имеет значение не масса объекта, а компонента ускорения свободного падения вдоль наклонной плоскости. Если нам известно ускорение движения кубика льда и пройденное расстояние ​ ( s ) ​, то получим значение скорости по известной формуле:

Уравнение силы трения на наклонной плоскости

Итак, масса не входит в формулу для определения конечной скорости.

Видео:Как решать задачи с силой трения на наклонной плоскости?Скачать

Как решать задачи с силой трения на наклонной плоскости?

Преодолеваем трение

Трудно представить себе повседневную жизнь без трения. Без трения автомобили не могли бы ездить, люди — ходить, а руки — брать любые предметы. Трение создает проблемы, но без него жизнь была бы просто невозможной.

Трение возникает из-за взаимодействия между поверхностными неровностями. Поверхность состоит из множества микроскопических выступов и впадин. При соединении двух поверхностей эти выступы одной поверхности и впадины другой поверхности сцепляются и препятствуют свободному проскальзыванию.

Допустим, что ваши сбережения хранятся в виде огромного золотого слитка, который показан на рис. 6.3, и некий злоумышленник задумал украсть его, но не может нести такой огромный слиток в руках, а может только тащить его волоком. Этот воришка стремится приложить силу к слитку, чтобы ускорить его и сбежать от преследующей его полиции. Однако благодаря силе трения вор не сможет развить большого ускорения.

Уравнение силы трения на наклонной плоскости

Определим количественно влияние силы трения на движение объектов. Результирующая сила на слиток и создаваемое ею ускорение определяется как разность приложенной силы ​ ( F_п ) ​ и силы трения ​ ( F_ ) ​ вдоль оси X:

Уравнение силы трения на наклонной плоскости

Эта формула выглядит очень просто, но как определить силу трения? Как будет показано ниже, она зависит от нормальной силы.

Вычисляем силу трения и нормальную силу

Сила трения ( F_ ) всегда противодействует приложенной силе, которая вызывает движение. Причем сила трения пропорциональна приложенной силе.

Как показано на рис. 6.3, слиток золота давит на горизонтальную поверхность с силой, равной весу слитка, ​ ( mg ) ​. А поверхность с той же силой действует на слиток. Эту силу называют нормальной силой (или силой нормального давления), ​ ( F_н ) ​.(Нормальной называется компонента силы со стороны поверхности, направленная по нормали к поверхности, т.е. перпендикулярно к поверхности.) Нормальная сила по величине не всегда совпадает с силой тяжести, поскольку нормальная сила всегда перпендикулярна поверхности, по которой движется объект. Иначе говоря, нормальная сила — это сила взаимодействия поверхностей разных объектов, и чем она больше, тем сильнее трение.

В примере на рис. 6.3 слиток скользит вдоль горизонтальной поверхности, поэтому нормальная сила равна весу объекта, т.е. ​ ( F_н=mg ) ​ Итак, у нас есть нормальная сила, которая равна силе давления слитка на горизонтальную поверхность. Для чего она нам нужна? Для определения силы трения.

Разбираемся с коэффициентом трения

Сила трения определяется характеристиками поверхностей соприкасающихся материалов. Как физики теоретически описывают их? Никак. У физиков есть множество общих уравнений, которые предсказывают общее поведение объектов, например ​ ( sum!F=ma ) ​ (см. главу 5). Однако у физиков нет полного теоретического понимания механизмов взаимодействия поверхностей материалов. Поэтому поверхностные характеристики материалов известны, в основном, из опыта.

А из опыта известно, что нормальная сила непосредственно связана с силой трения. Оказывается, что с большой точностью эти две силы пропорциональны друг другу и их можно связать с помощью константы ​ ( mu ) ​ следующим образом:

Уравнение силы трения на наклонной плоскости

Согласно этому уравнению, чтобы определить силу трения, нужно умножить нормальную силу на некую постоянную величину, т.е. константу ​ ( mu ) ​. Такая константа называется коэффициентом трения, и именно она характеризует свойства сцепления шероховатостей данных поверхностей.

Величина коэффициента трения находится в диапазоне от 0 до 1. Значение 0 возможно только в идеализированном случае, когда трение отсутствует вообще. А значение 1 соответствует случаю, когда сила трения максимальна и равна нормальной силе. Это значит, что максимальная сила трения для автомобиля не может превышать его веса.

Обратите внимание, что уравнение ​ ( F_=mu F_н ) ​ не является соотношением между векторами, поскольку эти векторы направлены в разные стороны. Например, на рис. 6.3 они перпендикулярны друг другу. Действительно, нормальная сила ( mathbf ) всегда перпендикулярна поверхности, а сила трения ​ ( mathbf<F_> ) ​ — параллельна. Эти направления определяются их природой: нормальная сила ( mathbf ) определяет степень сжатия поверхностей, а сила трения ( mathbf<F_> ) — степень противодействия скольжению вдоль поверхностей.

Сила трения не зависит от площади соприкосновения двух поверхностей. Это значит, что слиток с той же массой, но вдвое длиннее и вдвое ниже исходного будет испытывать точно такую же силу трения при скольжении по поверхности. При этом увеличивается вдвое площадь соприкосновения, но уменьшается вдвое давление, т.е. величина силы, которая приходится на единицу площади.

Итак, мы получили предварительные сведения и готовы вычислить силу трения? Не так быстро. Оказывается, что коэффициент трения бывает двух типов.

Знакомимся со статическим и кинетическим трением

Два разных коэффициента трения соответствуют двум разным типам трения: статическому трению (или трению покоя) и кинетическому трению (или трению скольжения).

Дело в том, что эти типы трения соответствуют двум разным физическим процессам. Если две поверхности не движутся относительно друг друга, то на микроскопическом уровне они взаимодействуют более интенсивно, и этот случай называется трением покоя. А когда поверхности уже скользят относительно друг друга, то микроскопические неровности не успевают вступить в интенсивное взаимодействие, и этот случай называется трением скольжения. На практике это значит, что для каждого из этих двух типов трения используются свои коэффициенты трения: коэффициент трения покоя ​ ( mu_п ) ​ и коэффициент скольжения ( mu_с ) .

Изучаем статическое трение

Трение покоя сильнее трения скольжения, т.е. коэффициент трения покоя ( mu_п ) больше коэффициента трения скольжения ( mu_с ) . Это можно упрощенно объяснить следующим образом. В состоянии покоя соприкасающиеся поверхности интенсивно взаимодействуют на микроскопическом уровне, а при скольжении поверхности успевают вступить в интенсивное взаимодействие только на более крупном макроскопическом уровне.

Трение покоя возникает тогда, когда нужно привести в движение покоящийся объект. Именно такую силу трения нужно преодолеть для начала скольжения объекта.

Предположим, что в примере на рис. 6.3 коэффициент трения покоя между слитком и поверхностью равен 0,3, а масса слитка равна 1000 кг (очень приличный слиток). Какую силу должен приложить воришка, чтобы сдвинуть слиток? Из предыдущих разделов нам уже известно, что:

Уравнение силы трения на наклонной плоскости

Поскольку поверхность горизонтальна, то нормальная сила направлена противоположно силе тяжести слитка и имеет ту же величину:

Уравнение силы трения на наклонной плоскости

где ​ ( m ) ​ — масса слитка, a ​ ( g ) ​ — ускорение свободного падения, вызванное силой притяжения со стороны Земли. Подставляя численные значения, получим:

Уравнение силы трения на наклонной плоскости

Итак, воришке потребуется приложить силу 2940 Н, чтобы сдвинуть с места неподвижный слиток. Довольно большая сила! А какая сила потребуется ему, чтобы поддерживать скольжение слитка? Для ответа на этот вопрос нужно рассмотреть трение скольжения.

Поддерживаем движение вопреки трению скольжения

Сила трения скольжения, возникающая из-за скольжения двух соприкасающихся поверхностей, не так велика, как сила трения покоя. Но это совсем не значит, что коэффициент трения скольжения можно легко вычислить теоретически, даже если нам известен коэффициент трения покоя. Оба коэффициента трения приходится определять из опыта.

Именно из опыта известно, что трение покоя больше трения скольжения. Представьте себе, что вы разгружаете неподвижный ящик на наклонной плоскости, но он вдруг начинает скользить вниз. Достаточно заблокировать его движение ногой и с большой вероятностью ящик останется в состоянии покоя, если аккуратно убрать ногу. Именно так, в состоянии покоя, проявляется трение покоя, а в процессе движения ящика — трение скольжения.

Пусть слиток на рис. 6.3 имеет массу 1000 кг, а коэффициент трения скольжения ​ ( mu_c ) ​ равен 0,18. Какую силу должен приложить воришка, чтобы сдвинуть с места неподвижный слиток? Для ответа на этот вопрос нужно воспользоваться следующей формулой:

Уравнение силы трения на наклонной плоскости

Подставляя численные значения, получим:

Уравнение силы трения на наклонной плоскости

Воришке потребуется приложить силу 1764 Н, чтобы поддерживать скольжение слитка. Не такая уж и маленькая сила, если, конечно, воришке не помогают его верные друзья. Однако это не так уж и легко, и полиция быстро сможет догнать этого воришку. Зная законы физики, полицейские вряд ли захотят прилагать лишние усилия: “Слиток-то мы нашли, а вот домой тащите его сами”.

Тянем груз в гору и боремся с трением

В предыдущих примерах со слитком описывалось трение на горизонтальной поверхности. А как определить силу сопротивления со стороны трения на наклонной плоскости?

Допустим, что, собираясь на рыбалку, вы решили захватить с собой холодильник массой 100 кг. Единственный способ погрузить его в багажник автомобиля — это втащить холодильник по наклонной плоскости, как показано на рис. 6.4. Пусть наклонная плоскость расположена под углом 30°, коэффициент трения покоя равен 0,2, а коэффициент трения скольжения — 0,15. Хорошая новость заключается в том, что вам помогают два друга, а плохая — в том, что каждый из вас способен приложить силу не более 350 Н.

Уравнение силы трения на наклонной плоскости

Ваши друзья растеряны? “Не стоит беспокоиться, немного физики — и все будет в порядке”, — можете ответить им вы, доставая калькулятор. Итак, нам нужно вычислить минимальную силу, которую нужно приложить, чтобы втащить холодильник вверх по наклонной плоскости в багажник автомобиля вопреки силе трения и силе тяжести.

Вычисляем компоненту силы тяжести

Для этого нужно внимательно изучить схему на рис. 6.4. Сила тяжести действует на холодильник и направлена вертикально вниз. Сумма углов треугольника, образованного вектором силы тяжести, наклонной плоскостью и ее основанием, равна 180°. Угол между вектором силы тяжести и основанием наклонной плоскости равен 90°, а угол между наклонной плоскостью и ее основанием — ​ ( theta ) ​. Поэтому угол между наклонной плоскостью и вектором силы тяжести равен:

Уравнение силы трения на наклонной плоскости

Компонента силы тяжести, действующая вдоль наклонной плоскости, равна:

Уравнение силы трения на наклонной плоскости

Таким образом, минимальная сила, с которой нужно толкать холодильник вверх по наклонной плоскости, равна сумме силы трения, ​ ( F_ ) ​, и этой компоненты ( F_ ) , т.е.:

Уравнение силы трения на наклонной плоскости

Определяем силу трения

Следующий вопрос: чему равна сила трения, ( F_ ) ? Какой коэффициент трения нужно использовать для ее определения: покоя или скольжения? Поскольку коэффициент трения покоя больше коэффициента трения скольжения, то для оценки минимально необходимой силы имеет смысл учесть коэффициент трения покоя. Ведь после того как холодильник удастся сдвинуть с места, для скольжения придется прикладывать меньшую силу. Итак, с учетом коэффициента трения покоя, получим для силы трения

Уравнение силы трения на наклонной плоскости

Для определения этой силы трения нам потребуется вычислить нормальную силу, ( F_н ) (более подробно эта сила описывается выше в этой главе). Она равна компоненте силы тяжести, которая направлена перпендикулярно (т.е. по нормали, откуда и происходит ее название) к наклонной плоскости. Как мы уже выяснили, угол между наклонной плоскостью и вектором силы тяжести равен 90°-​ ( theta ) ​(рис. 6.5).

Уравнение силы трения на наклонной плоскости

С помощью тригонометрических соотношений (см. главу 2) получим:

Уравнение силы трения на наклонной плоскости

Чтобы проверить справедливость этого выражения, попробуйте устремить угол ​ ( theta ) ​ к нулю, при котором нормальная сила ​ ( F_н ) ​ становится равной ​ ( mg ) ​, что и следовало ожидать. Теперь получаем:

Уравнение силы трения на наклонной плоскости

После подстановки численных значений получим:

Уравнение силы трения на наклонной плоскости

Итак, три человека должны приложить минимально необходимую силу 660 Н, т.е. по 220 Н каждый, что меньше максимально возможной силы 350 Н. С радостным призывом “Приступим!” вы приступаете к работе, втаскиваете холодильник на самый верх наклонной плоскости. Допустим, что из-за несогласованности действий кто-то из вас перестал прикладывать силу. Как результат, холодильник после непродолжительной остановки неожиданно заскользил вниз, а после достижения основания продолжил движение по полу до полной остановки.

Вычисляем путь скольжения холодильника до полной остановки

Допустим, что наклонная плоскость и пол имеют одинаковые коэффициенты трения скольжения. Каким будет путь скольжения холодильника до полной остановки? Пусть сначала холодильник скользит из состояния покоя до основания наклонной плоскости длиной 3 м, как показано на рис. 6.6. Во время такого скольжения холодильник разгоняется и вполне может столкнуться с автомобилем на расстоянии 7,5 м. О, Боже! Неужели они столкнутся? Нужно немедленно достать калькулятор и приступить к расчетам.

Вычисляем ускорение скольжения

При скольжении вниз действующие на холодильник силы направлены иначе, чем при скольжении вверх. Теперь вы и ваши друзья уже не прилагают свои силы, а холодильник скользит только под действием компоненты силы тяжести, направленной вдоль наклонной плоскости. А ей противодействует лишь сила трения. Чему же равна результирующая сумма этих сил? Из предыдущих разделов уже известно, что компонента силы тяжести вдоль наклонной плоскости равна:

Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

А нормальная сила равна:

Уравнение силы трения на наклонной плоскости

Это значит, что сила трения скольжения равна:

Уравнение силы трения на наклонной плоскости

Результирующая сила, которая действует на холодильник в направлении движения и определяет его ускорение, равна:

Уравнение силы трения на наклонной плоскости

Обратите внимание на то, что сила трения, ​ ( F_ ) ​, имеет отрицательный знак, т.е. она направлена противоположно компоненте силы тяжести вдоль наклонной плоскости, которая приводит в движение холодильник. После подстановки численных значений получим:

Уравнение силы трения на наклонной плоскости

Поскольку масса холодильника равна 100 кг, то он скользит с ускорением 363 Н/100 кг = 3,63 м/с 2 вдоль наклонной плоскости длиной 3 м. Для вычисления конечной скорости холодильника, ​ ( v ) ​, в конце наклонной плоскости нужно использовать следующую известную нам формулу:

Уравнение силы трения на наклонной плоскости

После извлечения квадратного корня и подстановки численных значений получим:

Уравнение силы трения на наклонной плоскости

Такой будет скорость холодильника в конце наклонной плоскости.

Вычисляем путь скольжения по полу

Как на основе данных, полученных в предыдущем разделе, определить путь скольжения холодильника по полу? Столкнется ли холодильник с автомобилем?

Итак, нам известно, что холодильник начинает движение по полу со скоростью 4,67 м/с. Вопрос: какое расстояние он пройдет до полной остановки? Теперь в горизонтальном направлении на него действует только сила трения, а компонента силы тяжести по горизонтали равна нулю. Поэтому холодильник постепенно замедляется и рано или поздно остановится. Но уцелеет ли при этом стоящий поодаль автомобиль? Как обычно, сначала вычисляем суммарную силу ​ ( F ) ​, действующую на холодильник в направлении движения и определяющую его ускорение. В данном случае она равна силе трения:

Уравнение силы трения на наклонной плоскости

Поскольку холодильник движется вдоль горизонтальной поверхности, то нормальная сила ​ ( F_н ) ​ равна силе тяжести ( F_g ) , действующей на холодильник:

Уравнение силы трения на наклонной плоскости

т.е. суммарная сила равна:

Уравнение силы трения на наклонной плоскости

После подстановки численных значений получим:

Уравнение силы трения на наклонной плоскости

Именно такая сила сопротивления действует на холодильник и… терроризирует всю округу! Итак, насколько длинным будет тормозной путь холодильника? Подставим численные значения и получим:

Уравнение силы трения на наклонной плоскости

Здесь отрицательный знак обозначает замедление холодильника (см. главу 2).

Уравнение силы трения на наклонной плоскости

найдем тормозной путь холодильника:

Уравнение силы трения на наклонной плоскости

Поскольку конечная скорость ​ ( v_1 ) ​, равна 0, то эта формула упрощается и принимает вид:

Уравнение силы трения на наклонной плоскости

Вот это да! Холодильник проедет расстояние 7,4 м и остановится всего в 10 см от автомобиля, который находится на расстоянии 7,5 м от основания наклонной плоскости. Можно расслабиться и понаблюдать за вашими друзьями, которые охвачены паникой и с ужасом в глазах ожидают столкновения холодильника и автомобиля.

Видео:ЗАДАЧИ НА НАКЛОННУЮ ПЛОСКОСТЬ - не ГРОБ! КАК ТАКИЕ РЕШАТЬ?Скачать

ЗАДАЧИ НА НАКЛОННУЮ ПЛОСКОСТЬ - не ГРОБ! КАК ТАКИЕ РЕШАТЬ?

Как гравитация влияет на свободное падение объектов

В главе 7 сила гравитационного притяжения (или сила тяжести) описывается в космическом масштабе, а здесь она рассматривается только вблизи поверхности Земли. В физике часто встречаются задачи с учетом силы тяжести. Этот раздел посвящен тому, как сила тяжести влияет на свободное падение объектов, и его следует рассматривать, как переходный между материалом предыдущей главы и материалом главы 7.

Стреляем вверх: максимальная высота

Зная ускорение свободного падения и начальную скорость объекта, можно легко вычислить дальность его полета. Эти знания могут пригодиться при подготовке праздничных фейерверков!

Предположим невероятное: на день рождения друзья подарили вам пушку, способную разгонять ядро весом 10 кг до начальной скорости 860 м/с. С изумлением рассматривая ее, гости начали спорить: а на какую максимальную высоту эта пушка способна выстрелить? Поскольку вы уже владеете всеми необходимыми знаниями, то можете быстро дать ответ на этот вопрос.

Нам известна начальная скорость ядра, ​ ( v_0 ) ​, и ускорение свободного падения ​ ( g ) ​ под действием силы тяжести. Как определить максимальную высоту подъема ядра? В точке максимального подъема ядра его скорость будет равна нулю, а затем оно начнет обратное движение вниз. Следовательно, для вычисления максимальной высоты подъема ядра, ​ ( s ) ​, можно использовать следующую формулу, в которой конечная скорость ​ ( v_1 ) ​ равна нулю:

Уравнение силы трения на наклонной плоскости

Уравнение силы трения на наклонной плоскости

Подставляя численные значения для начальной скорости ​ ( v_0 ) ​ = 860 м/с 2 , ускорения свободного падения под действием силы тяжести ​ ( g ) ​ = —9,8 м/с 2 (минус обозначает направление ускорения, противоположное направлению перемещения), получим:

Уравнение силы трения на наклонной плоскости

Ого! Ядро улетит на высоту 38 км. Совсем неплохо для пушки, подаренной на день рождения. Интересно, а сколько же времени придется его ждать обратно?

Время подъема ядра

Итак, сколько времени потребуется для того, чтобы ядро поднялось на максимальную высоту? В примере из главы 4, где мяч для игры в гольф падал с вершины обрыва, для вычисления дальности его полета использовалось следующее уравнение:

Уравнение силы трения на наклонной плоскости

Однако это уравнение представляет собой всего один из многих возможных вариантов поиска ответа на заданный вопрос.

Нам известно, что в точке максимального подъема скорость ядра равна 0. Поэтому для определения времени полета до максимальной высоты можно использовать следующее уравнение:

Уравнение силы трения на наклонной плоскости

Поскольку ​ ( v_1 ) ​ = 0 и ​ ( a ) ​ = ​ ( -g ) ​, то:

Уравнение силы трения на наклонной плоскости

Иначе говоря, получим:

Уравнение силы трения на наклонной плоскости

После подстановки численных значений получим:

Уравнение силы трения на наклонной плоскости

Итак, ядру потребуется 88 с, чтобы достичь максимальной высоты. А каково общее время полета?

Общее время полета

Сколько времени потребуется ядру, чтобы достичь максимальной высоты 38 км и вернуться обратно к пушке, если на подъем ему потребовалось 88 с? Общее время полета вычислить очень просто, поскольку обратный путь вниз симметричен прямому пути вверх. Это значит, что скорость ядра в каждой точке обратного пути вниз равна по величине и имеет противоположное направление по сравнению с прямым путем вверх. Поэтому время падения равно времени подъема и общее время полета равно удвоенному времени подъема:

Уравнение силы трения на наклонной плоскости

Итак, общее время полета равно 176 с, или 2 минуты и 56 секунд.

Стреляем под углом

В предыдущих разделах пушка стреляла вертикально вверх. Попробуем теперь поразить цель, стреляя ядром из пушки под углом, как показано на рис. 6.7.

Уравнение силы трения на наклонной плоскости

Разбиваем движение ядра на компоненты

Как характеризовать движение ядра при стрельбе под углом? Поскольку любое движение всегда можно разбить на компоненты по осям X и Y, а в данном примере сила притяжения действует только вдоль оси Y, то задача упрощается. Разобьем начальную скорость на компоненты (подробнее об этом рассказывается в главе 4):

Уравнение силы трения на наклонной плоскости

Эти компоненты независимы, а сила притяжения действует только в направлении оси Y. Это значит, что компонента ​ ( v_x ) ​ остается постоянной, а меняется только компонента ​ ( v_y ) ​:

Уравнение силы трения на наклонной плоскости

Теперь легко определить координаты ядра в любой момент. Например, координата ядра по оси X выражается формулой:

Уравнение силы трения на наклонной плоскости

Поскольку сила тяжести влияет на движение ядра по вертикали, то координата ядра по оси Y выражается формулой:

Уравнение силы трения на наклонной плоскости

Из предыдущего раздела нам уже известно, что общее время полета ядра по вертикали равно:

Уравнение силы трения на наклонной плоскости

Теперь, зная время, можно легко определить дальность полета ядра по оси X:

Уравнение силы трения на наклонной плоскости

Итак, для вычисления дальности полета ядра по горизонтали нужно знать начальную скорость ядра, ​ ( v_0 ) ​, и угол, ​ ( theta ) ​, под которым сделан выстрел.

Определяем максимальную дальность полета ядра

При каком угле выстрела ( theta ) ядро улетит на максимальное расстояние по горизонтали? Из тригонометрии известно, что ​ ( 2sinthetacostheta=sin2theta ) ​.

Уравнение силы трения на наклонной плоскости

и расстояние ​ ( s ) ​ будет максимальным при максимальном значении ​ ( sin2theta=1 ) ​, т.е. при ​ ( theta ) ​ = 45°.

Уравнение силы трения на наклонной плоскости

Совсем неплохо для пушки, подаренной на день рождения!

Видео:Сила тренияСкачать

Сила трения

Трение

В жизни все выглядит немного по-другому, т.к. мы постоянно сталкиваемся с трением. И это хорошо! Не будь трения — как бы мы жили? Ведь тогда нельзя было ни ходить, ни взять что-то в руки…

Какие же силы действуют на тело, которое мы пытаемся сдвинуть с места?

Уравнение силы трения на наклонной плоскости

Сила трения пропорциональна приложенной силе и противодействует ей. Шар давит на поверхность с силой m·g. А поверхность с той же силой действует на шар. Эту силу называют нормальной — Fн.

Нормальная сила всегда направлена перпендикулярно к поверхности

В нашем случае Fн = m·g, т.к. поверхность горизонтальна. Но, нормальная сила по величине не всегда совпадает с силой тяжести.

Нормальная сила — сила взаимодействия поверхностей соприкасающихся тел, чем она больше — тем сильнее трение.

Нормальная сила и сила трения пропорциональны друг другу:

0 180° — 90° — α = 90° — α

Составляющие силы тяжести вдоль наклонной плоскости:

Необходимая сила для поднятия шара:

Необходимо определить силу трения Fтр. С учетом коэффициента трения покоя:

Уравнение силы трения на наклонной плоскости

Вычисляем нормальную силу Fнорм, которая равна составляющей силы тяжести, перпендикулярно направленной к наклонной плоскости. Мы уже знаем, что угол между вектором силы тяжести и наклонной плоскостью равен 90° — α.

Fнорм = mgsin(90° — α) = mgcosα
F = mgsinα + μmgcosα

F = 1·9,8·sin30° + 0,1·1·9,8·cos30° = 4,9 + 0,85 = 5,75 Н

Нам потребуется к шару приложить силу в 5,75 Н для того, чтобы закатить его на вершину наклонной плоскости.

Задача №2: определить как далеко прокатится шар массой m = 1 кг по горизонтальной плоскости, скатившись по наклонной плоскости длиной 10 метров при коэффициенте трения скольжения μ = 0,05

Силы, действующие на скатывающийся шар, приведены на рисунке.

Уравнение силы трения на наклонной плоскости

Составляющая силы тяжести вдоль наклонной плоскости:

Fн = mgsin(90° — α) = mgcos(90° — α)

Сила трения скольжения:

Fтрения = μFн = μmgsin(90° — α) = μmgcosα

F = Fg — Fтрения = mgsinα — μmgcosα

F = 1·9,8·sin30° — 0,05·1·9,8·0,87 = 4,5 Н

F = ma; a = F/m = 4,5/1 = 4,5 м/с 2

Определяем скорость шара в конце наклонной плоскости:

V 2 = 2as; V = &38730;2as = &38730;2·4,5·10 = 9,5 м/с

Шар заканчивает движение по наклонной плоскости и начинает движение по горизонтальной прямой со скоростью 9,5 м/с. Теперь в горизонтальном направлении на шар действует только сила трения, а составляющая силы тяжести равна нулю.

Уравнение силы трения на наклонной плоскости

F = μFн = μFg = μmg = 0,05·1·9,8 = -0,49 Н

Знак минус означает, что сила направлена в противоположную сторону от движения. Определяем ускорение замедления шара:

a = F/m = -0,49/1 = -0,49 м/с 2

Тормозной путь шара:

Поскольку мы определяем путь шара до полной остановки, то V1=0:

s = (-V0 2 )/2a = (-9,5 2 )/2·(-0,49) = 92 м

Наш шарик прокатился по прямой целых 92 метра!

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Уравнение силы трения на наклонной плоскости

Код кнопки: Уравнение силы трения на наклонной плоскости
Политика конфиденциальности Об авторе

🔍 Видео

Движение тела по наклонной плоскостиСкачать

Движение тела по наклонной плоскости

ЕГЭ. Физика. Силы трения. Наклонная плоскость. ПрактикаСкачать

ЕГЭ. Физика. Силы трения. Наклонная плоскость. Практика

Как разложить силы на проекции (динамика 10-11 класс) ЕГЭ по физикеСкачать

Как разложить силы на проекции (динамика 10-11 класс) ЕГЭ по физике

Урок 39 (осн). Сила трения. Коэффициент тренияСкачать

Урок 39 (осн). Сила трения. Коэффициент трения

#9 НАКЛОННАЯ плоскость. Сила ТРЕНИЯСкачать

#9  НАКЛОННАЯ плоскость. Сила ТРЕНИЯ

Урок 88. Движение по наклонной плоскости (ч.2)Скачать

Урок 88. Движение по наклонной плоскости (ч.2)

Скатывание тела (колеса, цилиндра) по наклонной плоскостиСкачать

Скатывание тела (колеса, цилиндра) по наклонной плоскости

Сила трения. Движение по наклонной плоскости.Скачать

Сила трения. Движение по наклонной плоскости.

9 класс, 23 урок, Движение тел по наклонной плоскостиСкачать

9 класс, 23 урок, Движение тел по наклонной плоскости

Куда направлена сила тренияСкачать

Куда направлена сила трения

Урок 101. Скатывание тела с наклонной плоскостиСкачать

Урок 101. Скатывание тела с наклонной плоскости

Силы трения. Практическая часть - решение задачи. 7 класс.Скачать

Силы трения. Практическая часть - решение задачи. 7 класс.

Физика. Динамика. Тело на наклонной плоскости 2Скачать

Физика. Динамика. Тело на наклонной плоскости  2

Нахождение проекции силы тяжести для тела на наклонной плоскости. ЕГЭ 2023 по Физике на Изи.Скачать

Нахождение проекции силы тяжести для тела на наклонной плоскости.  ЕГЭ 2023 по Физике на Изи.
Поделиться или сохранить к себе: