Уравнение силы тока в катушке индуктивности

Катушка индуктивности в цепях переменного тока — формулы и определение с примерами

Переменный электрический ток:

До сих пор рассматривались электрические цепи, содержащие в различных сочетаниях резисторы, конденсаторы и катушки, с источником постоянного тока либо без него. Теперь рассмотрим подключение таких цепей к источнику переменного тока.

Пусть источник тока создает переменное гармоническое напряжение (рис. 194)
Уравнение силы тока в катушке индуктивности

Уравнение силы тока в катушке индуктивности

Согласно закону Ома сила тока на участке цепи, содержащем только резистор сопротивлением R, подключенный к этому источнику, изменяется со временем также по синусоидальному закону:
Уравнение силы тока в катушке индуктивности
где Уравнение силы тока в катушке индуктивности— амплитудное значение силы тока в цепи.

Как видно, сила тока в такой цепи также меняется с течением времени по синусоидальному закону.

Величины Уравнение силы тока в катушке индуктивностиназываются амплитудными значениями напряжения и силы тока. Значения напряжения U(t) и силы тока I(t), зависящие от времени, называют мгновенными.

Зная мгновенные значения U(t) и I(t), можно вычислить мгновенную мощность Уравнение силы тока в катушке индуктивностикоторая, в отличие от цепей постоянного тока, изменяется с течением времени.

С учетом зависимости силы тока от времени в цепи перепишем выражение для мгновенной тепловой мощности на резисторе в виде
Уравнение силы тока в катушке индуктивности

Поскольку мгновенная мощность меняется со временем, то использовать эту величину в качестве характеристики длительно протекающих процессов на практике крайне неудобно.

Перепишем формулу для мощности по-другому:
Уравнение силы тока в катушке индуктивности
Первое слагаемое не зависит от времени. Второе слагаемое — переменная составляющая — функция косинуса двойного угла и ее среднее значение за период колебаний равно нулю (см. рис. 194).

Поэтому среднее значение мощности переменного электрического тока за длительный промежуток времени можно найти по формуле
Уравнение силы тока в катушке индуктивности
Это выражение позволяет ввести действующие (эффективные) значения силы тока и напряжения, которые используются в качестве основных характеристик переменного тока.

Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.
Поскольку для постоянного тока Уравнение силы тока в катушке индуктивностито с учетом ранее полученного выражения для среднего значения мощности переменного тока действующее значение силы тока

Уравнение силы тока в катушке индуктивности
Аналогично можно ввести действующее значение и для напряжения
Уравнение силы тока в катушке индуктивности

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:
Уравнение силы тока в катушке индуктивности

Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе (см. рис. 194).
Таким образом, резисторы оказывают сопротивление как постоянному, так и переменному току, при этом в обоих случаях в них происходит превращение электрической энергии во внутреннюю. Вследствие этого сопротивление резисторов R получило название активного или омического сопротивления.

Содержание
  1. Катушка индуктивности в цепях переменного тока
  2. Катушка индуктивности. Описание, характеристики, формула расчета
  3. Накопленная энергия в индуктивности
  4. Гидравлическая модель
  5. Индуктивность в электрических цепях
  6. Схемы соединения катушек индуктивностей
  7. Параллельное соединение индуктивностей
  8. Последовательное соединение индуктивностей
  9. Добротность катушки индуктивности
  10. Катушка индуктивности. Формула индуктивности
  11. Базовая формула индуктивности катушки:
  12. Индуктивность прямого проводника:
  13. Индуктивность катушки с воздушным сердечником:
  14. Индуктивность многослойной катушки с воздушным сердечником:
  15. Индуктивность плоской катушки:
  16. Конструкция катушки индуктивности
  17. Применение катушек индуктивности
  18. Конденсатор, катушка и резонанс в цепи переменного тока
  19. теория по физике 🧲 колебания и волны
  20. Конденсатор в цепи переменного тока
  21. Катушка индуктивности в цепи переменного тока
  22. Резонанс в электрической цепи
  23. 📺 Видео

Катушка индуктивности в цепях переменного тока

Реальный соленоид (катушка индуктивности) обладает активным сопротивлением R и индуктивностью L. В цепях постоянного тока главную роль играет его сопротивление R, тогда как в цепях переменного тока — его индуктивность L.

Рассмотрим физические процессы, происходящие в идеальной катушке, у которой отсутствует активное сопротивление (R=0), при включении ее в цепь переменного тока.

В катушке индуктивностью L переменный ток Уравнение силы тока в катушке индуктивностивызывает появление ЭДС самоиндукции:
Уравнение силы тока в катушке индуктивностигде Уравнение силы тока в катушке индуктивности— амплитудное значение ЭДС самоиндукции (рис. 195).

Уравнение силы тока в катушке индуктивности

При возрастании силы тока ЭДС самоиндукции согласно правилу Ленца будет препятствовать его увеличению. Для идеальной катушки, активное сопротивление которой равно нулю (R=0), согласно закону Ома для полной цепи Уравнение силы тока в катушке индуктивностигде U(t) напряжение на концах катушки.

Следовательно, в любой момент времени внешнее напряжение на концах катушки равно по модулю и противоположно по знаку ЭДС самоиндукции в катушке:
Уравнение силы тока в катушке индуктивности

Сравнивая выражения для мгновенных значений силы тока I(t) и напряжения U(t), видим, что для их амплитудных значений можно записать закон Ома в виде Уравнение силы тока в катушке индуктивности

Величину Уравнение силы тока в катушке индуктивностиназывают индуктивным сопротивлением катушки. Оно пропорционально индуктивности катушки и частоте переменного тока в цепи Уравнение силы тока в катушке индуктивности

Обратите внимание на то, что фазы колебаний силы тока и напряжения не совпадают. Наличие сдвига фаз означает, что мгновенное значение напряжения U на катушке индуктивности опережает мгновенное значение силы I переменного тока по фазе на Уравнение силы тока в катушке индуктивностиТакой сдвиг фаз между колебаниями силы тока и напряжения характерен в целом для цепей переменного тока, содержащих элементы, обладающие индуктивностью.
Закон Ома для цепи переменного тока, содержащей только катушку индуктивности, выполняется и для действующих значении силы тока Уравнение силы тока в катушке индуктивностии напряжения Уравнение силы тока в катушке индуктивноститак как Уравнение силы тока в катушке индуктивноститогда Уравнение силы тока в катушке индуктивности

Таким образом, если в цепь переменного тока включена катушка индуктивности, то закон Ома выполняется для амплитудных и действующих значений силы тока и напряжения, но не выполняется для их мгновенных значений, так как мгновенные значения силы тока и напряжения не совпадают по фазе (см. рис. 195).

Мгновенная мощность, потребляемая катушкой индуктивности от источника переменного тока, определяется по формуле
Уравнение силы тока в катушке индуктивности

Поскольку среднее за период значение функции Уравнение силы тока в катушке индуктивностиравно нулю, то и средняя мощность за период также равна нулю:
Уравнение силы тока в катушке индуктивности

Как видно из рисунка 195, цепь с идеальной катушкой индуктивности в течение первой и третьей четвертей периода работает в режиме потребителя, запасая энергию магнитного поля Уравнение силы тока в катушке индуктивностив катушке, а в течение второй и четвертой — в режиме генератора, возвращая источнику запасенную энергию.

Поскольку потерь энергии в этом случае не происходит, то индуктивное сопротивление называют реактивным.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Конденсатор в цепях переменного тока
  • Электрический ток в различных средах
  • Электромагнитная индукция в физике
  • Правило Ленца для электромагнитной индукции
  • Потенциал электрического поля
  • Постоянный электрический ток
  • Законы постоянного тока
  • Переменный электрический ток

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Урок 359. Конденсатор и катушка индуктивности в цепи переменного тока.Скачать

Урок 359. Конденсатор и катушка индуктивности в цепи переменного тока.

Катушка индуктивности. Описание, характеристики, формула расчета

Уравнение силы тока в катушке индуктивности

Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

Уравнение силы тока в катушке индуктивности

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Видео:Урок 28. КАТУШКА ИНДУКТИВНОСТИ в цепи переменного токаСкачать

Урок 28.  КАТУШКА ИНДУКТИВНОСТИ в цепи переменного тока

Накопленная энергия в индуктивности

Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.

Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

Уравнение силы тока в катушке индуктивности

где L — индуктивность, I — ток, протекающий через катушку индуктивности.

Видео:Как Индуктивность зависит от Тока?Скачать

Как Индуктивность зависит от Тока?

Гидравлическая модель

Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.

Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.

Уравнение силы тока в катушке индуктивности

Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.

Видео:Активное и реактивное сопротивление в цепи переменного тока. 11 класс.Скачать

Активное и реактивное сопротивление в цепи переменного тока. 11 класс.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Уравнение силы тока в катушке индуктивности

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

Уравнение силы тока в катушке индуктивности

где ω является угловой частотой резонансной частоты F:

Уравнение силы тока в катушке индуктивности

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

Индуктивное сопротивление ХL определяется по формуле:

Уравнение силы тока в катушке индуктивности

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Уравнение силы тока в катушке индуктивности

Видео:катушка индуктивности в цепях постоянного и переменного токаСкачать

катушка индуктивности в цепях постоянного  и переменного тока

Схемы соединения катушек индуктивностей

Параллельное соединение индуктивностей

Уравнение силы тока в катушке индуктивности

Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:

Уравнение силы тока в катушке индуктивности

Последовательное соединение индуктивностей

Уравнение силы тока в катушке индуктивности

Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:

Уравнение силы тока в катушке индуктивности

Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.

Видео:Катушка индуктивности в цепи переменного токаСкачать

Катушка индуктивности в цепи переменного тока

Добротность катушки индуктивности

На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.

Добротность катушки индуктивности может быть найдена через следующую формулу:

Уравнение силы тока в катушке индуктивности

где R является собственным сопротивлением обмотки.

Видео:Ток при замыкании и размыкании цепи с индуктивностьюСкачать

Ток при замыкании и размыкании цепи с индуктивностью

Катушка индуктивности. Формула индуктивности

Базовая формула индуктивности катушки:

Уравнение силы тока в катушке индуктивности

  • L = индуктивность в генри
  • μ 0 = проницаемость свободного пространства = 4π × 10 -7 Гн / м
  • μ г = относительная проницаемость материала сердечника
  • N = число витков
  • A = Площадь поперечного сечения катушки в квадратных метрах (м 2 )
  • l = длина катушки в метрах (м)

Индуктивность прямого проводника:

Уравнение силы тока в катушке индуктивности

  • L = индуктивность в нГн
  • l = длина проводника
  • d = диаметр проводника в тех же единицах, что и l

Индуктивность катушки с воздушным сердечником:

Уравнение силы тока в катушке индуктивности

  • L = индуктивность в мкГн
  • r = внешний радиус катушки
  • l = длина катушки
  • N = число витков

Индуктивность многослойной катушки с воздушным сердечником:

Уравнение силы тока в катушке индуктивности

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • l = длина катушки
  • N = число витков
  • d = глубина катушки

Индуктивность плоской катушки:

Уравнение силы тока в катушке индуктивности

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • N = число витков
  • d = глубина катушки

Видео:Урок 287. Индуктивность контура (катушки). Явление самоиндукцииСкачать

Урок 287. Индуктивность контура (катушки). Явление самоиндукции

Конструкция катушки индуктивности

Катушка индуктивности представляет собой обмотку из проводящего материала, как правило, медной проволоки, намотанной вокруг либо железосодержащего сердечника, либо вообще без сердечника.

Применение в качестве сердечника материалов с высокой магнитной проницаемостью, более высокой чем воздух, способствует удержанию магнитного поля вблизи катушки, тем самым увеличивая ее индуктивность. Индуктивные катушки бывают разных форм и размеров.

Большинство изготавливаются путем намотки эмалированного медного провода поверх ферритового сердечника.

Уравнение силы тока в катушке индуктивности

Некоторые индуктивные катушки имеют регулируемый сердечник, при помощи которого обеспечивается изменение индуктивности.

Миниатюрные катушки могут быть вытравлены непосредственно на печатной плате в виде спирали. Индуктивности с малым значением могут быть расположены в микросхемах с использованием тех же технологических процессов, которые используются при создании транзисторов.

Видео:Физика 11 класс (Урок№9 - Конденсатор и катушка индуктивности в цепи переменного электрич. тока.)Скачать

Физика 11 класс (Урок№9 - Конденсатор и катушка индуктивности в цепи переменного электрич. тока.)

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

Уравнение силы тока в катушке индуктивности

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Видео:Урок №8. Катушка индуктивностиСкачать

Урок №8. Катушка индуктивности

Конденсатор, катушка и резонанс в цепи переменного тока

теория по физике 🧲 колебания и волны

Опишем колебания, которые происходят в цепи переменного тока при включении в нее конденсатора и катушки индуктивности. А также рассмотрим условия, при выполнении которых в цепи переменного тока наступает резонанс. Получим формулы для вычисления амплитуд напряжений, введем понятия емкостного и индуктивного сопротивления и выясним, какую роль играют эти величины.

Видео:ДЛЯ ЧЕГО НУЖНА КАТУШКА ИНДУКТИВНОСТИ? #катушка #индуктивность #электроникаСкачать

ДЛЯ ЧЕГО НУЖНА КАТУШКА ИНДУКТИВНОСТИ? #катушка #индуктивность #электроника

Конденсатор в цепи переменного тока

Постоянный ток не может существовать в цепи, содержащий конденсатор. Движению электронов препятствует диэлектрик, расположенный между обкладками. Но переменный ток в такой цепи существовать может, что доказывает опыт с лампой (см. рисунок ниже).

Уравнение силы тока в катушке индуктивности

Пусть фактически такая цепь разомкнута, но если по ней течет переменный ток, конденсатор то заряжается, то разряжается. Ток, текущий при перезарядке конденсатора нагревает нить лампы, и она начинает светиться.

Уравнение силы тока в катушке индуктивности

Найдем, как меняется сила тока в цепи, содержащей только конденсатор, если сопротивление проводов и обкладок конденсатора можно пренебречь (см. рис. выше). Напряжение на конденсаторе будет равно:

u = φ 1 − φ 2 = q C . .

Учтем, что напряжение на конденсаторе равно напряжению на концах цепи:

q C . . = U m a x cos . ω t

Следовательно, заряд конденсатора меняется по гармоническому закону:

q = C U m a x cos . ω t

Тогда сила тока, представляющая собой производную заряда по времени, будет равна:

i = q ´ = − C U m a x sin . ω t = C U m a x cos . ( ω t + π 2 . . )

Следовательно, колебания силы тока опережают колебания напряжения на конденсаторе на π 2 . . (см. график ниже). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того, как напряжение достигнет максимума, сила тока становится равной нулю и т.д.

Уравнение силы тока в катушке индуктивности

Амплитуда силы тока равна:

I m a x = U m a x C ω

Также будем использовать действующие значения силы тока и напряжения. Тогда получим, что:

Величина X C , равная обратному произведению циклической частоты на электрическую емкость конденсатора, называется емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома.

Обратите внимание, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода (при разрядке конденсатора), эта энергия возвращается в сеть.

Пример №1. Максимальный заряд на обкладках конденсатора колебательного контура q m a x = 10 − 6 Кл. Амплитудное значение силы тока в контуре I m a x = 10 − 3 А. Определите период колебания (потерями на нагревание проводника пренебречь).

Согласно закону сохранения энергии максимальное значение энергии электрического поля конденсатора равно максимальному значения магнитного поля катушки:

q 2 m a x 2 C . . = L I 2 m a x 2 . .

L C = q 2 m a x I 2 m a x . .

√ L C = q m a x I m a x . .

T = 2 π √ L C = 2 π q m a x I m a x . . = 2 · 3 , 14 10 − 6 10 − 3 . . ≈ 6 , 3 · 10 − 3 ( с )

Видео:Катушка индуктивности. Зачем нужна и где применяется.Скачать

Катушка индуктивности. Зачем нужна и где применяется.

Катушка индуктивности в цепи переменного тока

Соберем две электрических цепи, состоящих из лампы накаливания, катушки индуктивности и источника питания: в первом случае постоянного, во втором — переменного (см. рисунки «а» и «б» ниже).

Уравнение силы тока в катушке индуктивности

Опыт покажет, что в цепи постоянного тока лампа светится ярче по сравнению с той, что включена в цепь переменного тока. Это говорит о том, что сила тока в цепи постоянного тока выше действующего значения силы тока в цепи переменного тока.

Результат опыта легко объясняется явлением самоиндукции. При подключении катушки к постоянному источнику тока сила тока нарастает постепенно. Возрастающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь спустя какое-то время сила тока достигает наибольшего значения, соответствующему данному постоянному напряжению.

Если напряжение быстро меняется, то сила тока не успевает достигнуть максимального значения. Поэтому максимальное значение силы тока в цепи переменного тока с катушкой индуктивности ограничивается индуктивность. Чем больше индуктивность и чем больше частота приложенного напряжения, тем меньше амплитуда силы переменного тока.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь (см. рисунок ниже). Для этого найдем связь между напряжением на катушке и ЭДС самоиндукции в ней.

Уравнение силы тока в катушке индуктивности

Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри проводника в любой момент времени должна равняться нулю. Иначе, согласно закону Ома, сила тока была бы бесконечно большой. Равенство нулю напряженности поля оказывается возможным потому, что напряженность вихревого электрического поля → E i , порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля → E к , создаваемого в проводнике зарядами, расположенными на зажимах источника и в проводах цепи.

Из равенства → E i = − → E к следует, что удельная работа вихревого поля (т.е. ЭДС самоиндукции e i ) равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Учитывая, что удельная работа кулоновского поля равна напряжения на концах катушки, можно записать:

Напомним, что сила переменного тока изменяется по гармоническому закону:

i = I m a x sin . ω t

Тогда ЭДС самоиндукции равна:

e i = − L i ´ = − L ω I m a x cos . ω t

Так как u = − e i , то напряжение на концах катушки оказывается равным:

u = L ω I m a x cos . ω t = L ω I m a x sin . ( ω t + π 2 . . ) = U m a x ( ω t + π 2 . . )

Амплитуда напряжения равна:

U m a x = L ω I m a x

Следовательно, колебания напряжения на катушке опережают колебания силы тока на π 2 . . , или колебания силы тока отстают от колебаний напряжения на π 2 . . , что одно и то же.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (см. график ниже).

Уравнение силы тока в катушке индуктивности

Но в момент, когда напряжение становится равным нулю, сила тока максимальна по модулю. Амплитуда силы тока в катушке равна:

I m a x = U m a x L ω . .

Также будем использовать вместо амплитуд действующие значения силы тока и напряжения. Тогда получим:

Величина X L , равная произведению циклической частоты на индуктивность, называется индуктивным сопротивлением. Индуктивное сопротивление зависит от частоты. Поэтому в цепи постоянного тока, в котором отсутствует частота, индуктивное сопротивление катушки равно нулю.

Пример №2. Катушка с индуктивным сопротивлением X L = 500 Ом присоединена к источнику переменного напряжения, частота которого ν = 1000 Гц. Действующее значение напряжения U = 100 В. Определите амплитуду силы тока I m a x в цепи и индуктивность катушки L. Активным сопротивлением пренебречь.

Индуктивное сопротивление катушки выражается формулой:

X L = L ω = 2 π ν L

Уравнение силы тока в катушке индуктивности

Так как амплитуда напряжения связана с его действующим значением соотношением U m a x = U √ 2 , то для амплитуды силы тока получаем:

Видео:Почему UL опережает iL на 90°│Сдвиг фаз между UL и iL│Катушка в цепи переменного токаСкачать

Почему UL опережает iL на 90°│Сдвиг фаз между UL и iL│Катушка в цепи переменного тока

Уравнение силы тока в катушке индуктивности

Видео:катушка в цепи постоянного токаСкачать

катушка в цепи постоянного тока

Резонанс в электрической цепи

Механические и электромагнитные колебания имеют разную природу, но процессы, происходящие при этом, идентичны. Поэтому можно предположить, что резонанс в электрической цепи так же реален, как резонанс в колебательной системе, на которую действует периодическая сила.

Напомним, что в механической системе резонанс тем более заметен, чем меньше в колебательной системе трение между ее элементами. Роль трения в электрической цепи играет активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока во внутреннюю энергию проводника, который при этом нагревается. Следовательно, резонанс в электрической цепи будет отчетливо наблюдаться при малом активном сопротивлении R.

Если активное сопротивление мало, то собственная частота колебаний в колебательном контуре определяется формулой:

Сила тока при вынужденных колебаниях должна достигать максимальных значений, когда частота переменного напряжения, приложенного к контуру равна собственной частоте колебательного контура:

Резонанс в электрическом колебательном контуре — явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

После включения внешнего переменного напряжения резонансное значение силы тока в цепи устанавливается не моментально, а постепенно. Амплитуда колебаний силы тока возрастает до тех пор, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:

I 2 m a x R 2 . . = U m a x I m a x 2 . .

Упростив это уравнение, получим:

I m a x R = U m a x

Следовательно, амплитуда установившихся колебаний силы тока при резонансе определяется уравнением:

I m a x = U m a x R . .

При сопротивлении, стремящемся к нулю, сила тока возрастает до бесконечно больших значений. При большом сопротивлении сила тока возрастает незначительно. Это хорошо видно на графике ниже.

Уравнение силы тока в катушке индуктивности

Пример №3. В цепь переменного тока с частотой ν = 500 Гц включена катушка индуктивностью L = 10 мГн. Какой емкости конденсатор надо включить в эту цепь, чтобы наступил резонанс?

Электрическая цепь, описываемая в условии, представляет собой колебательный контур. Резонанс в этой цепи наступит, когда частота переменного тока будет равна собственной частоте колебательного контура (ν = ν0).

ν 0 = 1 2 π √ L C . .

Уравнение силы тока в катушке индуктивности

К колебательному контуру подсоединили источник тока, на клеммах которого напряжение гармонически меняется с частотой ν.

Индуктивность L катушки колебательного контура можно плавно менять от максимального значения Lmax до минимального Lmin, а ёмкость его конденсатора постоянна.

Ученик постепенно уменьшал индуктивность катушки от максимального значения до минимального и обнаружил, что амплитуда силы тока в контуре всё время возрастала. Опираясь на свои знания по электродинамике, объясните наблюдения ученика.

Алгоритм решения

Решение

В колебательном контуре источником тока возбуждаются вынужденные колебания. Частота этих колебаний равна частоте источника — ν. Амплитуда колебаний зависит от того, как соотносятся между собой внешняя частота и частота собственных электромагнитных колебаний, которая определяется формулой:

ν 0 = 1 2 π √ L C . .

По мере увеличения внешней частоты от нуля до ν0 амплитуда растет. Она достигает максимума тогда, когда происходит резонанс. При этом внешняя частота равна частоте собственных электромагнитных колебаний: ν = ν0. Затем амплитуда начинает убывать.

В данном случае, ученик меняет не внешнюю частоту, а частоту собственных электромагнитных колебаний. При плавном уменьшении индуктивности контура от максимального значения Lmax до минимального Lmin частота возрастает от ν0min до ν0max. Причем:

ν 0 m i n = 1 2 π √ L m i n C . .

ν 0 m a x = 1 2 π √ L m a x C . .

Из того факта, что амплитуда всё время увеличивалась, можем сделать вывод, что частота ν0 всё время приближалась к частоте источника тока, при этом ν > ν0max. В противном случае наблюдалось бы уменьшений амплитуды силы тока.

pазбирался: Алиса Никитина | обсудить разбор | оценить

В колебательном контуре, состоящем из катушки индуктивности и конденсатора, происходят свободные незатухающие электромагнитные колебания.

Из приведённого ниже списка выберите две величины, которые остаются постоянными при этих колебаниях.

а) период колебаний силы тока в контуре

б) фаза колебаний напряжения на конденсаторе

в) заряд конденсатора

г) энергия магнитного поля катушки

д) амплитуда колебаний напряжения на катушке

Алгоритм решения

  1. Определить, от чего зависит каждая из перечисленных величин.
  2. Установить, какие величины меняются, а какие нет.

Решение

В колебательном контуре происходят гармонические колебания. Поэтому период колебаний силы тока в контуре — величина постоянная.

Фаза — это величина, которая определяет положение колебательной системы в любой момент времени. Поскольку в системе происходят колебания, фаза меняется.

Заряд конденсатора — колебания происходят за счет постоянной перезарядки конденсатора. Следовательно, эта величина тоже меняется.

Энергия магнитного поля катушки — в колебательном контуре происходят взаимные превращения энергии магнитного поля катушки в энергию электрического поля конденсатора, и обратно. Поэтому энергия магнитного поля катушки постоянно меняется.

В условии задачи сказано, что колебания незатухающие. Это значит, что полная механическая энергия колебательной системы сохраняется. Поскольку именно от нее зависит амплитуда колебаний напряжения на катушке, то эта величина также остается постоянной.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Уравнение силы тока в катушке индуктивностиНа рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше? Ответ запишите в мкс.

📺 Видео

64 Катушка индуктивностиСкачать

64 Катушка индуктивности

ИндуктивностьСкачать

Индуктивность

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I - №30828Скачать

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I - №30828

Как переменный ток идет через конденсатор? #энерголикбез за пару минут!Скачать

Как переменный ток идет через конденсатор? #энерголикбез за пару минут!

Уравнение силы переменного тока в цепи RLEСкачать

Уравнение силы переменного тока в цепи RLE

Урок 147 (осн). Сила тока. Единицы силы тока. АмперметрыСкачать

Урок 147 (осн). Сила тока. Единицы силы тока. Амперметры
Поделиться или сохранить к себе: