Уравнение сидерического движения для верхних планет

Видео:Законы КеплераСкачать

Законы Кеплера

Сидерический и синодический периоды обращения объектов по своим орбитам

Уравнение сидерического движения для верхних планет

«Небесная механика», как было принято называть науку о звездах во времена Исаака Ньютона, подчиняется классическим законам движения тел. Одними из важных характеристик этого движения являются различные периоды обращения космических объектов по своим орбитам. В статье пойдет речь о сидерическом и синодическом периодах обращения звезд, планет и их естественных спутников.

Видео:Конфигурации планет. Что такое элонгация и квадратура?Скачать

Конфигурации планет. Что такое элонгация и квадратура?

Понятие о синодическом и сидерическом временных периодах

Уравнение сидерического движения для верхних планет

Практически каждый из нас знает, что планеты движутся по эллиптическим орбитам вокруг своих звезд. Звезды, в свою очередь, совершают орбитальные движения вокруг друг друга или вокруг центра Галактики. Иными словами, все массивные объекты космоса имеют определенные траектории движения, включая кометы и астероиды.

Важной характеристикой для всякого космического объекта является время, которое он затрачивает, чтобы совершить один полный оборот по своей траектории. Это время принято называть периодом. Чаще всего в астрономии при изучении Солнечной системы пользуются двумя периодами: синодическим и сидерическим.

Сидерический временной период — это время, которое требуется объекту, чтобы он совершил полный оборот по своей орбите вокруг своей звезды, при этом за точку отчета берется другая удаленная звезда. Этот период также называют реальным, поскольку именно такое значение времени обращения по орбите получит неподвижный наблюдатель, который будет следить за процессом вращения объекта вокруг его звезды.

Синодический период — это время, через которое объект появится в одной и той же точке на небосводе, если смотреть на него с какой-либо планеты. Например, если взять Луну, Землю и Солнце и задаться вопросом о том, через какое время Луна будет находиться в точке на небе, в которой она находится в данный момент, ответом на него будет значение синодического периода Луны. Этот период также называют кажущимся, поскольку от реального орбитального периода он отличается.

Видео:Конфигурации планетСкачать

Конфигурации планет

Главное отличие между сидерическим и синодическим периодами

Уравнение сидерического движения для верхних планет

Как уже было сказано, сидерический — это реальный период обращения, а синодический — это кажущийся, однако в чем же главная разница между этими понятиями?

Вся разница заключается в количестве объектов, относительно которых измеряется временная характеристика. Понятие «сидерический период» принимает во внимание всего один относительный объект, например, Марс вращается вокруг Солнца, то есть движение рассматривается только относительно одной звезды. Синодический же временной период — это характеристика, которая учитывает относительное положение двух и более объектов, например, два одинаковых положения Юпитера относительно земного наблюдателя. То есть здесь необходимо учитывать положение Юпитера не только относительно Солнца, но и относительно Земли, которая также вращается вокруг Солнца.

Видео:АСТРОНОМИЯ. 12й УРОК. КОНФИГУРАЦИЯ ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ. ИЗУЧАЕМ, ПОВТОРЯЕМ 12й УР АСТРОНОМСкачать

АСТРОНОМИЯ. 12й УРОК. КОНФИГУРАЦИЯ ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ. ИЗУЧАЕМ, ПОВТОРЯЕМ  12й УР АСТРОНОМ

Формула расчета сидерического периода

Уравнение сидерического движения для верхних планет

Для определения реального периода обращения планеты вокруг своей звезды или естественного спутника вокруг своей планеты, необходимо воспользоваться третьим законом Кеплера, который устанавливает взаимосвязь между реальным орбитальным периодом объекта и полудлиной его большой оси. В общем случае форма орбиты любого космического тела представляет собой эллипс.

Формула для определения сидерического периода имеет вид: T = 2*pi*√(a3/(G*M)), где pi = 3,14 — число пи, a — полудлина большой оси эллипса, G = 6,674*10-11 м3/(кг*с2) — универсальная гравитационная постоянная, M — масса объекта, вокруг которого осуществляется вращение.

Таким образом, зная параметры орбиты любого объекта, а также массу звезды, можно легко вычислить значение реального периода обращения этого объекта по своей орбите.

Видео:Уравнение, которое меняет взгляд на мир [Veritasium]Скачать

Уравнение, которое меняет взгляд на мир [Veritasium]

Расчет синодического временного периода

Как вычислить? Синодический период планеты или ее естественного спутника можно рассчитать, если знать значение реального ее периода обращения вокруг рассматриваемого объекта и реального периода обращения этого объекта вокруг своей звезды.

Формула, которая позволяет провести подобный расчет, имеет вид: 1/P = 1/T ± 1/S, здесь P — реальный период обращения рассматриваемого объекта, T — реальный период обращения объекта, относительно которого рассматривается движение, вокруг своей звезды, S — неизвестный синодический временной период.

Знаком «±» в формуле следует пользоваться так: если T > S, тогда формула используется со знаком «+», если же T 19 августа, 2018

Видео:Урок 65. Движение планет. Законы КеплераСкачать

Урок 65. Движение планет. Законы Кеплера

Уравнение сидерического движения для верхних планет

§ 11. К онфигурация планет. С инодический период

1. Конфигурация планет и условия их видимости

У словия видимости планет Подробные сведения о положении планет и условиях их видимости даются в «Школьном астрономическом календаре» на каждый учебный год. Эту информацию можно найти и в Интернете. меняются по-разному: если Меркурий и Венеру можно видеть только утром или вечером, то остальные — Марс, Юпитер и Сатурн — бывают видны также и ночью. По временам одна или несколько планет могут быть вовсе не видны, поскольку они располагаются на небе поблизости от Солнца. В этом случае говорят, что планета находится в соединении с Солнцем. Если же планета располагается на небе вблизи точки, диаметрально противоположной Солнцу, то она находится в противостоянии . В этом случае планета появляется над горизонтом в то время, когда Солнце заходит, а заходит она одновременно с восходом Солнца. Следовательно, всю ночь планета находится над горизонтом.

Соединение и противостояние, а также другие характерные расположения планеты относительно Солнца называются конфигурациями . Внутренние планеты (Меркурий и Венера), которые всегда находятся внутри земной орбиты, и внешние, которые движутся вне её (все остальные планеты), меняют свои конфигурации по-разному. Названия различных конфигураций внутренних и внешних планет, которые характеризуют расположение планеты относительно Солнца на небе, приведены в таблице и на рисунке 3.4.

Рис. 3.4. Конфигурации внутренней и внешней планеты

Видео:§ 2 Синодический периодСкачать

§ 2   Синодический период

Конфигурации планет, расстояния до тел и их размеры

Уравнение сидерического движения для верхних планет

УРОК 7. КОНФИГУРАЦИИ ПЛАНЕТ,

РАССТОЯНИЯ ДО ТЕЛ И ИХ РАЗМЕРЫ.

1. Основные конфигурации нижних и верхних планет.

2. Сидерический и синодический периоды планет.

3. Определение размеров Земли

4. Определение расстояний до тел.

5. Определение размеров тел.

1. Основные конфигурации внутренних и внешних планет.

Сложное видимое движение планет на небесной сфере обусловлено обращением планет Солнечной системы вокруг Солнца. Само слово «планета» в переводе с древнегреческого означает «блуждающая» или «бродяга». Траектория движения небесного тела называется его орбитой.

По отношению к орбите Земли планеты разделяются на внутренние (нижние) — Меркурий, Венера, их орбиты расположены внутри земной орбиты, и внешние (верхние) — Марс, Юпитер, Сатурн, Уран, Нептун их орбиты расположены вне орбиты Земли. Внешние планеты всегда повернуты к Земле стороной, освещаемой Солнцем. Внутренние планеты меняют свои фазы подобно Луне. Плоскости орбит всех планет Солнечной системы лежат вблизи плоскости эклиптики, отклоняясь от нее менее, чем на 7°. Скорости движения планет по орбитам различны и убывают с удалением планет от Солнца. Земля движется медленнее Меркурия и Венеры, но быстрее всех остальных планет. Из-за различия скоростей движения планет в определенные моменты времени возникают различные взаимные расположения Солнца и планет.

Особые, геометрически правильные, взаимные расположения Солнца, Земли и планет называются конфигурациями. Одинаковые конфигурации планет происходят в разных точках их орбит, напротив разных созвездий, в разное время года. Конфигурации, которые создаются нижними и верхними планетами различны.

Уравнение сидерического движения для верхних планетУ нижних планет это соединения V1 и V3 (верхнее и нижнее) и элонгации V2 и V4 (восточная и западная). У верхних планет это – квадратуры M2 и М4 (восточная и западная), соединение M1 и противостояние M3.

Что же стоит за этими страшными названиями. Соединения — это расположение Солнца, Земли и планеты на одной прямой, при этом планета находится либо между Солнцем и Землей (нижнее соединение), либо прячется от Земли за Солнцем (верхнее соединение). Единственной конфигурацией, в которой может находиться любая, и нижняя, и верхняя планета, является верхнее соединение, при этом планету естественно нельзя наблюдать. Нижнее соединение присуще только нижним планетам, при этом, хотя и достаточно редко, мы можем наблюдать прохождение Меркурия и Венеры ( в виде черного кружка) на фоне диска Солнца.

Видимое движение нижних планет напоминает колебательное движение около Солнца. Максимальное угловое удаление нижних планет от Солнца называется элонгацией. В случае элонгации Земля планета и Солнце образуют прямоугольный треугольник, при этом в вершине прямого угла находится планета. Наибольшая элонгация Меркурия — 28˚, Венеры — 48˚. С Земли в это время видно не все освещенное Солнцем полушарие планеты, а только его часть, называемая фазой. При восточной элонгации планета видна на западе вскоре после захода Солнца, при западной – на востоке незадолго перед восходом Солнца.

Наиболее удобный момент наблюдения верхних планет – это противостояние. Все три небесных тела, как и при соединении, находятся на одной линии, но Земля в этом случае расположена между Солнцем и планетой и все полушарие планеты освещено Солнцем. Внешняя планета может находиться на любом угловом расстоянии от Солнца от 0˚ до 180˚. Когда угловое расстояние между Солнцем и верхней планетой составляет 90˚, то говорят, что планета находится в квадратуре ( квадратура – угловая четверть круга), соответственно в восточной или западной, как и при элонгации. В этом случае Земля, Солнце и планета так же образуют прямоугольный треугольник, но в вершине прямого угла находится Земля.

Система Земля — Луна — Солнце особая, в ней имеется нижнее соединение, как у внутренних планет, при этом происходит новолуние (Луна между Солнцем и Землей), и противостояние, как у внешних планет, во время полнолуния.

Уравнение сидерического движения для верхних планет2. Сидерический и синодический периоды планет.

Промежуток времени, в течение которого планета совершает полный оборот вокруг Солнца по орбите, называется сидерическим (или звездным) периодом обращения планеты (Т), а промежуток времени между двумя одинаковыми конфигурациями планеты – синодическим периодом (S). Планеты движутся вокруг Солнца в одном направлении, и каждая из них через промежуток времени, равный ее сидерическому периоду, совершает один полный оборот вокруг Солнца. Пусть планеты находились в определенной конфигурации. За промежуток времени равный сидерическому периоду Земли любая нижняя планета сделает больше одного оборота вокруг Солнца и обгонит Землю, а любая верхняя — меньше полного оборота, и отстанет от Земли. Следовательно, через земной год конфигурация планет не повторится, т. е. синодический период не равен сидерическому. Однако между периодами существует зависимость, которую легко установить. Эта зависимость называется уравнением синодического движения.

Составим уравнение для нижней планеты. За земные сутки планета смещается на угол Уравнение сидерического движения для верхних планетгде Т – сидерический период планеты, а Земля на угол Уравнение сидерического движения для верхних планет, где Уравнение сидерического движения для верхних планет— сидерический период Земли. Разность этих углов даст угол опережения α, Уравнение сидерического движения для верхних планет, на который нижняя планета за сутки опередит Землю. Когда за S суток накопится опережение в 360º (α·S=360º) конфигурация планет повторится. S — в данном случае — синодический период. Окончательно уравнение для нижней планеты выглядит так:

Уравнение сидерического движения для верхних планетили Уравнение сидерического движения для верхних планетили Уравнение сидерического движения для верхних планет

Поскольку верхние планеты движутся медленнее, чем Земля, то для них уравнение принимает вид: Уравнение сидерического движения для верхних планетили Уравнение сидерического движения для верхних планетили Уравнение сидерического движения для верхних планет

Задача. Определите период обращения Марса вокруг Солнца, зная, что противостояния Марса происходят каждые 780 суток?

Уравнение сидерического движения для верхних планет; Уравнение сидерического движения для верхних планет

3. Определение размеров Земли.

Уравнение сидерического движения для верхних планетПредставление о Земле как о шаре, который свободно без всякой опоры висит в пространстве, безусловно, является одним из величайших достижений науки древнего мира. И первое точное определение земных размеров было сделано Эратосфеном из Египта. Проделанный им эксперимент относится к одному из десяти самых красивых физических экспериментов, придуманных человечеством. Он решил измерить длину небольшой дуги земного меридиана не в градусах, а в единицах длины, и далее определить, какую часть в градусах полной окружности она составляет. Зная часть, найти длину всей окружности. Затем по длине окружности определить величину радиуса, который и является радиусом земного шара.

Очевидно, что длина дуги меридиана в градусах равна разности географических широт двух пунктов, находящихся на одном меридиане: Δφ=φв – φА. Для того чтобы определить эту разность, Эратосфен сравнил высоту Солнца в кульминации в один и тот же день в пунктах А и В ( Александрия и Асуан). В Асуане в этот день Солнце освещало дно самых глубоких колодцев, т. е. было в зените, а в Александрии отстояло от зенита на 7,2˚, Из простых геометрических построений следовало, разность широт этих городов Δφ=7,2˚. В древних единицах измерения расстояние между Александрией и Асуаном составляло 5000 греческих стадий, современное – 800 км. Обозначив длину меридиана Земли через L, имеем следующую пропорцию: Уравнение сидерического движения для верхних планетоткуда получаем длину меридиана равную 40000 км. Зная длину окружности, легко находим радиус Земли — 6366 км, что отличается от среднего радиуса всего на 5 км.

В какой степени форма Земли отличается от шара, выяснилось только в конце XVIII века в результате работы двух экспедиций в Южной Америке в Перу и в Скандинавии вблизи Северного полярного круга. Измерения показали, что длина в 1˚ дуги меридиана на севере и на юге больше, чем на экваторе. Это означало, что Земля сплюснута у полюсов. Ее полярный радиус на 21 км короче экваториального. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения Земли. И уже в ХХ веке выяснилось, что земной экватор также нельзя считать окружностью. Его сплюснутость в 100 раз меньше сплюснутости меридиана, но она все же существует. Точнее всего форму нашей планеты передает фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

4. Определение расстояний до тел.

Уравнение сидерического движения для верхних планетУравнение сидерического движения для верхних планетОпределить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними, чему могут мешать естественные препятствия. Поэтому используется способ, основанный на явлении параллактического смещения. Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя. Сначала точно вычисляют длину удобно расположенного отрезка ВС, называемого базисом и двух углов В и С в треугольнике АВС. Далее по теореме синусов Уравнение сидерического движения для верхних планет Уравнение сидерического движения для верхних планетлегко находятся значения АС и АВ. Аналогичным методом пользуются и при определении расстояния до небесных тел. Измерить расстояние от Земли до Солнца впервые удалось лишь в XVIII веке, когда был определен горизонтальный параллакс Солнца. Горизонтальным параллаксом (р) называется угол, под которым со светила, находящегося на горизонте, виден радиус Земли, перпендикулярный лучу зрения. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является радиус Земли. Единственное отличие в том, что треугольник строится прямоугольный, что упрощает вычисления.

Уравнение сидерического движения для верхних планетИз треугольника OAS можно выразить величину расстояния SО=D: где RÅ – радиус Земли. Конечно, со светила никто не наблюдает радиус Земли, а горизонтальный параллакс определяют по измерениям высоты светила в момент верхней кульминации из двух точек Земли, находящихся на одном меридиане и имеющих известные широты, по аналогии с методом Эратосфена. Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны (рƒ =57΄02΄΄), параллакс Солнца р=8,79′′. Такому значению параллакса соответствует расстояние до Солнца равное км. Это расстояние принимается за одну астрономическую единицу (1а. е.) и используется при измерении расстояний между телами Солнечной системы.

Для малых углов sinpp, при этом р выражен в радианах. Если р выразить в секундах, то формула примет вид: Уравнение сидерического движения для верхних планетÅ, так как в одном радиане 206265′′.

Методом горизонтального параллакса определяли расстояние до объектов вплоть до второй половине 20 века, когда появились новые методы определения расстояний в Солнечной системе — радиолокация и лазерная локация. С помощью этих методов были уточнены расстояния до многих тел с точностью до километра, а лазерная локация Луны позволяет определять расстояния с точностью до сантиметров.

Задача. На каком расстоянии от Земли находится Сатурн, когда его параллакс равен 0,9’’? Уравнение сидерического движения для верхних планет

5. Определение размеров тел.

Уравнение сидерического движения для верхних планет Уравнение сидерического движения для верхних планетЗная расстояние до светила D, можно определить его линейные размеры, если измерить угловой радиус ρ. Угловой радиус это угол, под которым с Земли виден радиус тела. Уравнение сидерического движения для верхних планет, Подставляя D имеем:Уравнение сидерического движения для верхних планетÅ, а так как углы ρ и р0 малы, то Уравнение сидерического движения для верхних планет Уравнение сидерического движения для верхних планетЕсли расстояние D известно, то Уравнение сидерического движения для верхних планет, где ρ измеряется в секундах.

Задача. Чему равен диаметр Луны, если она видна с расстояния 400000 км под углом 30′? Переводим 30′ в 1800″. Dƒ =D·ρ= Уравнение сидерического движения для верхних планет.

Д. з. §7. п.2,3. задачи 8,9 стр.35, § 11. задачи 1, 5, 6 стр.52.

Вопросы экспресс опроса

1. Можно ли наблюдать Меркурий по вечерам на востоке?

2. Что такое соединение?

3. Можно ли наблюдать Венеру утром на востоке, а вечером на западе?

4.Угловое расстояние планеты от Солнца равно 55°.Какая это планета, верх или ниж?

5. Что такое конфигурация?

6. Какие планеты могут пройти на фоне диска Солнца?

7. Во время каких конфигураций хорошо видны нижние планеты?

8. Во время каких конфигураций хорошо видны верхние планеты?

9. Что такое сидерический период планеты?

10. Что такое синодический период?

11. Что такое горизонтальный параллакс?

12. Что называется параллактическим смещением?

13. Когда верхняя планета находится в квадратуре?

14. Что такое элонгация?

15. При каком соединении можно наблюдать внутреннюю планету?

🎦 Видео

13 Законы движения планет Солнечной системыСкачать

13  Законы движения планет Солнечной системы

Астрономия. Найти сидерический период для нижней планетыСкачать

Астрономия. Найти сидерический период для нижней планеты

Астрономия 11 кл §11 Конфигурация планет. Синодический периодСкачать

Астрономия 11 кл §11 Конфигурация планет. Синодический период

Астрономия. Найти синодический период для верхней планетыСкачать

Астрономия. Найти синодический период для верхней планеты

Запуск курсов по олимпиадной астрономии🚀 Вращательное движение🚀Уравнение синодического движенияСкачать

Запуск курсов по олимпиадной астрономии🚀 Вращательное движение🚀Уравнение синодического движения

Конфигурации планет. Часть 2Скачать

Конфигурации планет.  Часть 2

Сидерический и синодический периоды ЛуныСкачать

Сидерический и синодический периоды Луны

Сидерический и синодический периоды обращения небесных телСкачать

Сидерический и синодический периоды обращения небесных тел

Законы КеплераСкачать

Законы Кеплера

Физика 11 класс (Урок№31 - Солнечная система. Законы движения планет.)Скачать

Физика 11 класс (Урок№31 - Солнечная система. Законы движения планет.)

Урок 64. Искусственные спутники Земли. Первая космическая скорость. Геостационарная орбитаСкачать

Урок 64. Искусственные спутники Земли. Первая космическая скорость. Геостационарная орбита

Сутки и сезоны: что такое синодический и сидерический периоды и как движется ЗемляСкачать

Сутки и сезоны: что такое синодический и сидерический периоды и как движется Земля

Тема 4. Гелиоцентрическая система КоперникаСкачать

Тема 4. Гелиоцентрическая система Коперника
Поделиться или сохранить к себе: